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A method has been developed allowing structural and binding parameters to be recovered by global
analysis of two-dimensional array of steady-state RET data in the special case where energy acceptors
distribute between aqueous and lipid phases while donors are embedded in the membrane at a known
depth. To test the validity of this approach, correlation and error analyses have been performed using
simulated data. To exemplify the method application to the membrane studies, energy transfer from
anthrylvinyl-labeled phosphatidylcholine incorporated into mixed phosphatidylcholine/cardiolipin
unilamellar vesicles to heme group of cytochrome c is analyzed.
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INTRODUCTION

Resonance energy transfer (RET) has found numer-
ous applications in membrane studies providing informa-
tion on proximity relationships [1,2], molecular clustering
[3], lipid domain formation [4,5], protein adsorption [6–
9], etc. An extensive use of RET technique is determined
by its ability to give unique structural information, com-
plementary to that obtained by other powerful physical
methods such as X-ray and neutron scattering, NMR, and
cryoelectron microscopy [2]. Among the main advantages
of RET approach to structural characterization of mem-
brane systems are: use of diluted samples, monitoring of
the membrane processes under physiological conditions,
high sensitivity, and relative simplicity of the experiment.

In the present paper, we consider a special case of the
steady-state RET application to model membrane systems
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where energy acceptors distribute between aqueous and
lipid phases while donors are embedded in the membrane
at a known depth (e.g., by means of phospholipid
covalent labeling). In principle, measurements in this
format can provide information on the transverse location
of acceptor/acceptor-labeled molecule in the lipid bilayer.
However, the analysis and interpretation of experimental
data may be complicated by the fact that RET efficiency
in the membrane depends both on the transverse distance
separating the donor and acceptor arrays, and on the accep-
tor surface concentration, which is in turn determined by
the extent of acceptor binding to the membrane. Indeed, it
is often difficult to differentiate the contributions of these
two factors to the overall transfer efficiency [10]. This ob-
stacle can be overcome by estimating binding parameters
for the studied system in a separate binding assay, and
then recalculating the amount of bound acceptor corre-
sponding to the conditions of RET experiment. There are
two main groups of binding assays [8]: those where bound
and free ligand undergo physical separation, and indirect
ones, taking advantage of the changes in a particular
spectral property (e.g., absorbance, fluorescence intensity,
anisotropy) upon binding. The former group of methods
includes centrifugation or gel filtration, which have
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serious drawbacks: separation causes shift of equilibrium
between free and bound ligand, the assays are often carried
out in the range of concentrations that differ significantly
from those used in RET experiment, the methods are
time- and labor-consuming. Spectroscopic techniques,
although very sensitive and applicable under the same
conditions as RET, assume certain relation between the
change in spectral parameter and the amount of bound
ligand, which is not always direct and unambiguous.

Given the above complications, the question arises
whether it is possible to resolve structural parameter
(transverse location of membrane-bound acceptor) and
binding parameters using steady-state RET measurements
alone. In the present paper we propose an experimental
design and data treatment methodology allowing both
structural and binding parameters to be determined with
high accuracy and statistical significance. The approach is
based on global analysis (GA) of two-dimensional array
of energy transfer data obtained by varying both total ac-
ceptor concentration and lipid concentration. The analysis
is made possible by combining adequate model of mem-
brane RET with appropriate binding model. To validate
this approach to parameter resolution, we use simulated
data and analyze associated error surfaces (χ2-statistic
vs. estimated parameters) and coefficients of parameter
cross-correlation. As an example of application, energy
transfer from anthrylvinyl-labeled phosphatidylcholine
incorporated into mixed phosphatidylcholine/cardiolipin
unilamellar vesicles to heme group of cytochrome c is
analyzed.

THEORY

In this section, we briefly describe theoretical mod-
els involved in the global analysis scheme presented here.
The choice of these models is dictated by their relative
simplicity on the one hand, and possibility to illustrate
principal features of the proposed approach on the other.
Consider a model system where lipid bilayer-embedded
donor and bound acceptor are characterized by certain
transverse locations in the membrane. In other words,
donors and acceptors are confined to two parallel planes
separated by a distance da. Suppose further that donors and
acceptors are randomly distributed over their respective
planes. According to the theory described in more detail
earlier [11–13], the interplane separation da is related to
the relative quantum yield of donor, Qr, by the following
relationships:

Qr = QDA

QD
=

∫ ∞

0
e−λ(I (λ))N dλ, (1)

where QD and QDA are the donor quantum yields in the
absence and presence of acceptor, respectively, λ = t/τD

is the dimensionless time, τD is the lifetime of the donor
in the absence of acceptor, N is the number of acceptor
molecules in the vicinity of the donor, and I (λ) is the
additional donor decay term due to energy transfer to each
of the surrounding acceptors:

I (λ) =
Rd∫

da

exp
[−λ(R0/R)6

] · W (R) dR, (2)

where R0 is the Förster distance, Rd is the distance be-
yond which energy transfer is negligible (Rd ≥ 3R0), and
W (R)d R is the probability of finding an acceptor at the
distance between R and R + d R from the donor. The form
of the expressions for W (R) and N depends on the system
geometry, and in the simplest case considered here they
are given by:

W (R) = 2R

R2
d − d2

a

; N = πC s
A

(
R2

d − d2
a

)
. (3)

Here C s
A is the acceptor surface concentration related to the

molar concentrations of bound acceptor, B, and accessible
lipid, Lacs:

C s
A = B

Lacs
∑

f j S j
, (4)

f j and Sj being the mole fraction and mean area per
molecule of the j-th lipid species constituting the mem-
brane, respectively.

Note that to apply the above formalism one needs
to know the concentration of bound acceptor B, which
determines the surface acceptor concentration C s

A
(Eq. (4)), and hence the relative quantum yield of donor
Qr. To relate the amount of bound acceptor B to the
total acceptor concentration, A, and accessible lipid
concentration Lacs, one should employ an appropriate
binding model. To simplify further analysis we use here
conventional Langmuir model:

Kd = B

(A − B)(Lacs/n − B)
,

B = 1

2


A + Lacs

n
+ Kd −

√(
A + Lacs

n
+ Kd

)2

− 4
ALacs

n


 ,

(5)

where Kd is the equilibrium dissociation constant, and n
is the binding stoichiometry.

By combining Eqs. (1)–(5) one obtains the rela-
tive quantum yield as a function of five variables: Qr =
f (A, Lacs; n, Kd, da). The two of them, A and Lacs, are
independent variables that can be varied in the experi-
ment (Lacs depends on the total lipid concentration, L ,
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Fig. 1. Relative quantum yield of donor as a function of total acceptor
concentration calculated for total lipid concentration L = 150 µM and
two different sets of parameters: n = 100, Kd = 0.2 µM, da = 5.0 nm—
solid line, n = 195, Kd = 0.4 µM, da = 3.0 nm—dashed line.

and the type of model system; e.g., for large unilamellar
vesicles and non-permeating acceptor it is assumed that
Lacs = 0.5L). n, Kd, and da are unknown parameters to be
determined by least-squares analysis of experimental data.

A typical dependence of the relative quantum
yield on the total acceptor concentration is shown in
Fig. 1 (solid curve). The calculation was performed at
a fixed total lipid concentration L = 150 µM, and the
following values of parameters: n = 100, Kd = 0.2 µM,
da = 5.0 nm. Importantly, simulations show that the set
of parameters providing this particular dependence is not
unique. As an example, the dashed curve in Fig. 1 was
calculated using n = 195, Kd = 0.4 µM, da = 3.0 nm,
a completely different set of parameters. As can be seen
from Fig. 1, the two curves are virtually indistinguishable
from each other. This phenomenon, known as parameter
cross-correlation [14,15], is frequently encountered in
biophysical and biochemical investigations. In some RET
applications, one would be content with relative changes
in acceptor surface coverage and/or position upon varying
the experimental conditions (instead of the exact values of
the parameters). However, severe cross-correlation of the
fitting parameters makes it impossible to judge whether
the changes in relative quantum yield of donor result
from the variation of the acceptor transverse location
or from the changes in its binding to the membrane.
Therefore, it is necessary to ascertain what format of
RET measurements permits structural and/or binding
parameters to be determined unambiguously.

Fig. 2. Dependence of quenching profiles on total lipid concentration,
n = 100, Kd = 0.2 µM, da = 5.0 nm, R0 = 5.88 nm.

In the next section it is shown that the cross-
correlation between the above three fitting parameters
(n, Kd, da) can be overcome by the simultaneous anal-
ysis of a two-dimensional array of experimental data ob-
tained by varying both total acceptor concentration and
lipid concentration. Shown in Fig. 2 are quenching pro-
files calculated for five lipid concentrations and parame-
ter values typical for protein-lipid interactions (n = 100,
Kd = 0.2 µM, da = 5.0 nm). As the lipid concentration
increases, acceptor molecules distribute over a greater bi-
layer area resulting in the acceptor surface concentration
decrease, and lowered energy transfer (rising curves in
Fig. 2). It is this peculiarity of energy transfer dependence
on total acceptor and lipid concentrations that makes it
possible to resolve structural and binding parameters by
global analysis of the expanded data array.

RESULTS

Simulations

To test the validity of the proposed approach in an-
alyzing the steady-state RET data and to evaluate the
accuracy and cross-correlation of recovered structural
and binding parameters, computer simulations were em-
ployed. Relative quantum yield was calculated using
Eqs. (1)–(5) for various combinations of total accep-
tor concentration (A) and total lipid concentration (L)
within the ranges typical for RET experiments: 0 ≤ A ≤
1.8 µM, 80 ≤ L ≤ 630 µM. Preset values of parameters
n, Kd, and da were used in the calculation. Gaussian noise
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with a standard deviation of 0.015 was added to the calcu-
lated data to mimic experimental errors. Further analysis
was performed in terms of the reduced χ2 statistic [16]:

χ2
R(n, Kd, da) = 1

nAnL − 3

×
nA∑

i=1

nL∑
j=1

(Qr(Ai , L j , n, Kd, da) − EXPi, j )2

σ 2
(6)

where nA and nL are the numbers of acceptor and lipid
concentrations, respectively, EXPi, j is the relative quan-
tum yield simulated for the i-th acceptor concentration
and j-th lipid concentration, σ is the standard deviation.

Three characteristic RET datasets were considered:
1) Univariate data (1D data) obtained at a fixed lipid con-
centration by varying total acceptor concentration only
(30 simulated data points); input values of parameters:
n = 100, Kd = 0.2 µM (n and Kd corresponding to the
saturable (with respect to A) binding in the specified
ranges of concentrations), da = 5.0 nm; L = 158 µM. 2)
Two-dimensional data array (2D data) obtained by vary-
ing both lipid and total acceptor concentrations; input
values of parameters: n = 100, Kd = 0.2 µM (saturable
binding), da = 5.0 nm; 30 data points total: 5 lipid con-
centrations × 6 acceptor concentrations. 3) 2D data for
the case of unsaturable binding; input values of parame-
ters: n = 30, Kd = 5 µM (n and Kd corresponding to the
linear/unsaturable (with respect to A) binding isotherms
in the specified ranges of concentrations), da = 5.0 nm;
30 data points total (5L j × 6Ai ).

To assess how the quality and uniqueness of the least-
squares fitting depend on the format of RET data we ana-
lyzed the projections of the corresponding error surfaces
with respect to specific parameters (Fig. 3A–C). An error
surface is known to be a χ2 statistic for a given dataset
plotted against optimized parameters. Error surfaces are
now increasingly used in data analyses, providing the most
adequate way to estimate uncertainties in the parameters
derived from least-squares fitting [16–18]. The curves in
Fig. 3A–C were generated by fixing one parameter at a se-
ries of values, and performing a nonlinear minimization,
allowing the remaining parameters to vary until the mini-
mum of χ2

R is reached. The series of minimum χ2
R values

possible over a particular range of the fitting parameter
(da, Kd, or n) was recorded for each of the three formats
of RET data. The error surface projections for the univari-
ate data (1D data) depicted by dashed curves in Fig. 3 are
seen to be very ill-defined, i.e. show no clear minimum.
In contrast, the two-dimensional data (2D data) result in
well-defined error surfaces, with distinct and relatively
narrow minima close to the input values of the parame-
ters. Solid and dotted curves in Fig. 3 correspond to the

Fig. 3. Projections of the error surfaces with respect to the fitting
parameters (da, n, Kd) for the different types of data: 1D data (sat-
urable binding)—dashed lines, 2D data (saturable binding)—solid lines,
2D data (unsaturable binding)—dotted lines. Panel A, dependence on
da; panel B, dependence on n; panel C, dependence on Kd.
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2D data simulated for the conditions of saturable and un-
saturable binding, respectively. Note that in the case of
unsaturable (within the experimental range of A) binding
minima of the error surface projections for both binding
and structural parameters are broader than those observed
in the case of saturable binding.

Also shown in Fig. 3 are 67% confidence levels as
determined by F-statistic [16]. Confidence intervals are
obtained as abscissas of intersection of the confidence
level with corresponding error surface projections. For
example, confidence intervals for the donor-acceptor in-
terplane separation (da) are as follows: 2.3 < da < 5.4 nm
for the 1D data, 4.8 < da < 5.1 nm for the 2D data (sat-
urable binding), and 4.7 < da < 5.2 nm for the 2D data
(unsaturable binding). As can be seen from Fig. 3B and
C, similar tendencies in the changes of confidence inter-
vals hold for the binding parameters, Kd and n. Clearly,
univariate data analysis can hardly provide any satisfac-
tory estimates of the parameters, while global analysis of
the two-dimensional data array allows the parameters to be
determined with high accuracy and statistical significance.

To further analyze the origins of such dramatic
difference in the accuracy of least-squares estimation,
coefficients of cross-correlation for the different formats
of experimental data were calculated. A coefficient of
cross-correlation for a pair of fitting parameters shows the
extent to which the increase in χ2 caused by a variation
in one parameter can be compensated for by a variation
in the other one [15]. The values of a cross-correlation
coefficient vary within ±1, with zero indicating no
cross-correlation between the parameters. It is generally
accepted that a cross-correlation above ∼0.95, in absolute
value, indicates that the parameters are highly correlated,
and in this case the model and/or experimental design
should be reconsidered [15,19].

Here we make use of the two types of coefficients:
general and partial coefficients of cross-correlation.
General coefficients of cross-correlation reflect mutual
influence of the two parameters, say, α1 and α2, when the
remaining parameters are allowed to vary. In this way,
general coefficients of cross-correlation are also sensitive
to all higher order correlations mediated by the remaining
parameters—it is a “net” characteristic. On the contrary,
partial coefficients of cross-correlation characterize direct
correlation of the two parameters when all remaining
parameters are considered as fixed. Calculation of the
cross-correlation coefficients is based on the matrix of
partial derivatives of the fitting function, G, with respect
to the fitting parameters, αl [15]:

Jk,l = ∂G(α1, α2, . . . , Xk)

∂αl
, (7)

Table I. General Coefficients of Cross-Correlation

Pair of parameters

Type of data n − Kd da − n da − Kd

1Ddata (saturable binding) 0.911 −0.973 −0.979
2Ddata (saturable binding) −0.360 −0.336 −0.703
2Ddata (unsaturable binding) −0.968 0.101 −0.340

where Xk is the vector of independent variables in
the k-th experimental point. The general coefficient of
cross-correlation, sl,m , between l-th and m-th parameter
is defined as [20]:

sl,m = [(JTJ)−1]lm√
[(JTJ)−1]ll · [(JTJ)−1]mm

(8)

where JT is the transpose of J, and −1 refers to the
matrix inversion. Corresponding partial coefficient, rl,m ,
is defined as:

rl,m = −(JTJ)lm√
(JTJ)ll · (JTJ)mm

(9)

General and partial coefficients of cross-correlation
calculated for the different types of RET data are
presented in Tables I and II, respectively. It appears
that in the case of the univariate data analysis the
correlation between the structural and binding parameters
is very high (∼0.98). It is this correlation that leads
to the ill-defined error surface for the univariate data:
numerous combinations of parameters give essentially
identical χ2

R statistic (Fig. 3, dashed curves). Advantage
of the global analysis of two-dimensional data is evi-
denced by significantly smaller values of the parameter
cross-correlation coefficients (Tables I and II). Thus,
simultaneous determination of structural and binding
parameters becomes possible due to significantly reduced
cross-correlation between the parameters when 2D-array
of RET measurements is globally analyzed.

Data in Tables I and II also demonstrate that the extent
of parameter cross-correlation, and hence the accuracy of
parameter estimation by 2D-data global analysis depend
on the mode of acceptor binding. If RET experiment is

Table II. Partial Coefficients of Cross-Correlation

Pair of parameters

Type of data n − Kd da − n da − Kd

1Ddata (saturable binding) −0.904 −0.972 −0.978
2Ddata (saturable binding) −0.889 −0.887 −0.937
2Ddata (unsaturable binding) −0.998 −0.971 −0.974
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carried out in the ranges of lipid and acceptor concentra-
tions where acceptor binding is unsaturable, the correla-
tion between parameters is seen to be high even in the case
of 2D data.

It should be noted that the cross-correlation between
the parameters of a nonlinear model, which is the case
here, is a function of the specific parameters values
[15]. Therefore, the analyses performed here for the two
characteristic sets of parameters (modeling saturable and
unsaturable binding) cannot themselves rigorously prove
the superiority of our global analysis approach in general.
However, similar simulations performed for different
input values of n, Kd and da (data not shown) yielded
similar results.

Experimental Data Analysis

As an illustration of the proposed global anal-
ysis approach, an example of real experimental data
is given and analyzed. Fluorescent labeled phospho-
lipid, 1-acyl-2-[12-(9-anthryl)-11-trans-dodecenoyl]-sn-
glycerophosphocholine (AV-PC) [21] was used as energy
donor, while heme group of water-soluble protein cy-
tochrome c (oxidized form) served as acceptor. AV-PC
was incorporated (at a molar ratio <0.01) into unilamel-
lar lipid vesicles composed of egg phosphatidylcholine
and beef heart cardiolipin (10 mol%). Butylated hydrox-
ytoluene (5 mol%) was added to the membranes to pre-
vent lipid peroxidation. Fluorescence measurements were
performed with Hitachi M-850 spectrofluorimeter. AV-
PC fluorescence was excited at 368 nm, and registered
at 434 nm (emission maximum). Slit widths were 5 nm.
Förster radius (R0) for the pair AV-PC/cytochrome c was
calculated to be 4.7 nm. Relative quantum yield of AV-PC
was calculated as a ratio of intensities in the presence and
in the absence of acceptor. Figure 4 shows relative quan-
tum yield of AV-PC as a function of the total cytochrome
c concentration, recorded at five different concentrations
of lipid (data points with error bands). Solid lines in Fig. 4
represent best fit of the data by the global analysis proce-
dure yielding the following estimates of the fitting parame-
ters: da = 3.51 nm, Kd = 0.28 µM, n = 27. Correspond-
ing 67% confidence intervals were found to be: 3.42 <

da < 3.60 nm, 0.20 < Kd < 0.37 µM, and 25 < n < 29.

DISCUSSION

In this paper we proposed a new methodology for the
analysis of steady-state RET measurements in membranes
based on global least-squares fit of two-dimensional data

Fig. 4. Global fit of experimental RET data for cytochrome c interaction
with the AV-PC-doped lipid vesicles. R0 = 4.7 nm. Total lipid concen-
trations (bottom to top, µM): 29, 71, 143, 285, 571.

array obtained by varying both lipid and acceptor con-
centrations. It was shown that in the special case where
energy transfer occurs from donors localized in the mem-
brane at a known depth to acceptors distributed between
aqueous and lipid phases, this type of analysis can provide
unambiguous information on both binding parameters and
transverse location of acceptor in the membrane.

Global analysis is now widely used in biophysical
and biochemical studies as a powerful tool for quantitative
interpretation of experimental results. A great number of
examples evidence fruitfulness of global analysis applied
to fluorescence data. Particularly, in time-resolved RET
studies GA allowed to distinguish between intramolec-
ular distance distributions and conformational dynamics
in macromolecules [17], to recover multiple fluorescence
lifetimes in protein [22], and to resolve fluorescence de-
cay parameters and dimensionality of fluorophore distri-
bution in model membranes [23]. Applied to steady-state
RET data, GA permitted simultaneous determination of
dissociation constant, stoichiometry of protein binding to
membrane, and distance of closest approach between flu-
orescent labeled protein and lipid-bound probe [24]. In
the main, the data treatment procedure employed by Chen
and Lentz [24] is similar to the approach presented here,
but the analysis was performed for a different case where
acceptors are confined to the lipid bilayer while donors
partition between aqueous and lipid phases.

Analysis of the data presented here led us to several
ideas regarding the optimal design of RET experiment and
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perspectives of using steady-state RET in membrane stud-
ies. Firstly, to ensure appreciable energy transfer, Förster
distance (R0) for the donor-acceptor pair employed should
be of the order of da, the donor-acceptor interplane separa-
tion. Secondly, if Langmuir binding model (or any model
with more than one fitting parameter) is used, one should
choose the ranges of lipid and acceptor concentrations that
provide the widest limits for the total acceptor-to-lipid
molar ratio possible in RET experiment, so that the re-
gion of saturation would be covered. The accuracy of both
binding and structural parameter estimation decreases if
the experiment is carried out in the concentration range
where acceptor binding is unsaturable with respect to the
total acceptor concentration, or in the case where bind-
ing is linear with respect to lipid concentration (the case
where the acceptor surface density is independent of the
lipid concentration). The requirement of the wide concen-
tration range is in accordance with the recent conclusion
by Johnson [15] that the wider the range of independent
variables, the lower the cross-correlation of fitting param-
eters. Finally, the presented approach provides a basis for
deriving structural information and binding characteris-
tics within the framework of more sophisticated RET and
binding models taking into account peculiar membrane
processes such as lipid domain formation, protein aggre-
gation, etc. Thus, steady-state RET data globally analyzed
in terms of the proposed approach are expected to give
more profound quantitative information on a variety of
membrane phenomena.
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