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phosphatidylglycerol model membranes as evidenced by resonance energy transfer

Galyna P. Gorbenko a,⁎, Valeriya M. Trusova a, Julian G. Molotkovsky b, Paavo K.J. Kinnunen c

a Department of Biological and Medical Physics, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61077, Ukraine
b Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117871, Russia
c Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine, P.O. Box 63, Haartmaninkatu 8, University of Helsinki, FIN-00014, Finland

a b s t r a c ta r t i c l e i n f o

Article history:
Received 19 December 2008
Received in revised form 11 March 2009
Accepted 16 March 2009
Available online 25 March 2009

Keywords:
Resonance energy transfer
Cytochrome c
Protein–lipid interactions
Heme bilayer location
Lipid demixing

Resonance energy transfer (RET) between anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phospha-
tidylglycerol (AV-PG) as donors and the heme groups of cytochrome c (cyt c) as acceptors was examined in
PC/PG model membranes containing 10, 20 or 40 mol% PG with an emphasis on evaluating lipid demixing
caused by this protein. The differences between AV-PC and AV-PG RET profiles observed at PG content 10 mol
% were attributed to cyt c ability to produce segregation of acidic lipids into lateral domains. The radius of
lipid domains recovered using Monte-Carlo simulation approach was found not to exceed 4 nm pointing to
the local character of cyt c-induced lipid demixing. Increase of the membrane PG content to 20 or 40 mol%
resulted in domain dissipation as evidenced by the absence of any RET enhancement while recruiting AV-PG
instead of AV-PC.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Among a variety of functionally relevant features of biological
membranes one of the most essential is associated with their
structural heterogeneity. High lateral mobility and chemical diversity
of lipids and proteins favor the formation of nanometer to micrometer
length scale regions differing from a bulk by their composition and
physicochemical properties — membrane domains. These structures
currently attract increasingly growing interest stimulated by their
significant role in a number of cellular events including exocytosis,
regulating the enzyme activity, modulating protein–membrane bind-
ing, signalling etc. [1]. A novel approach in molecular medicine, called
membrane–lipid therapy considers membrane domains as a new
target in the treatment of several human disorders [2].

To detect inhomogeneities in the lateral organization of cellular
and model membranes, a range of powerful physical techniques have
been employed, including atomic force microscopy [3], small-angle
neutron scattering [4], fluorescence microscopy [5], fluorescence
correlation spectroscopy [6], electron paramagnetic resonance [7],
Fourier transform infrared spectroscopy [8], and resonance energy
transfer [9]. Despite the great progress made in the past decade, the
factors initiating and regulating domain formation still remain largely
unknown. Characterization of nanoscale domains is particularly
challenging, because of their highly dynamic nature and the size

lying beyond the resolution of light microscopy. In this regard,
fluorescence techniques, mainly resonance energy transfer (RET)
seems to be especially promising. RET efficiency sensitively depends
on the separation of donor and acceptor fluorophores on a scale 1–
10 nm, their lateral distribution in a membrane and acceptor surface
density. This makes RET technique potentially suitable for deducing
the size of nanoscale domains, the fraction of membrane area
occupied by these structures, the density of fluorophores confined
within domains, and the mechanism of lateral reorganization of
membrane constituents.

One type of membrane heterogeneity is represented by the
domains formed upon adsorption of cationic proteins or peptides
to negatively charged mixed bilayers. Lateral redistribution of anionic
and neutral lipids has been induced, particularly, by cytochrome c
[10,11], cardiotoxin II [12], polylysine [13] and basic peptides [14,15].
Existing theoretical models for this phenomenon emphasize the
importance of both electrostatic and nonelectrostatic (elastic
membrane deformation) forces and consider two possibilities: (i)
formation of macroscopic protein–lipid domains enriched in acidic
lipids, and (ii) local lipid demixing implicating molecular scale
deviation from the average lipid composition within and around
protein–membrane interaction zone [15–18]. Our previous studies on
resonance energy transfer between tryptophan residues as donors
and anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phosphati-
dylglycerol (AV-PG) as acceptors revealed local demixing of PC and
PG upon adsorption of lysozyme onto PC/PG lipid bilayers [19]. In
the present study we employed RET technique to define demixing-
favoring conditions and the extent of lipid redistribution produced
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by cytochrome c, another basic protein functioning as a component
of mitochondrial respiratory chain. Although preferential association
of cyt c with anionic lipids has long been established with a wide
range of spectroscopic approaches [20–23], this property has been
insufficiently scrutinized within the context of domain formation.
Further in-depth evaluation of domain-forming potential of cyt c
seems to be of importance in at least two regards. First, modulation
of cyt c affinity for the inner mitochondrial membrane by lateral
reorganization of the constituting lipids may prove essential not only
for electron-transfer function of this protein, but also for its pro-
pensity to trigger programmed cell death, which presumably
involves dissociation of cyt c–cardiolipin complexes [24]. Second,
systematic studies of domain assembly in a wide variety of protein–
lipid systems represent an effective way for identifying structural and
physicochemical determinants of protein-induced lipid segregation.

2. Materials and methods

2.1. Chemicals

Bovine heart cyt c (oxidized form) and HEPES were purchased
from Sigma (St. Louis, MO, USA). 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phos-
pho-rac-glycerol (POPG) were from Avanti Polar Lipids (Alabaster,
AL). Fluorescent lipids, 1-acyl-2-[12-(9-anthryl)-11-trans-dodece-
noyl]-sn-glycero-3-phosphocholine (AV-PC), and 1-acyl-2-[12-(9-
anthryl)-11-trans-dodecenoyl]-sn-glycero-3-phospho-1-rac-glycerol
(AV-PG) were synthesized as described in detail elsewhere [25,26]. All
other chemicals were of analytical grade.

2.2. Preparation of lipid vesicles

Large unilamellar vesicles were prepared by extrusion from PC
mixtures with PG (10, 20 or 40 mol%). A thin lipid film was first
formed from the lipid solutions in chloroform by removing the solvent
under a stream of nitrogen. The dry lipid residues were subsequently
hydrated with 20 mM HEPES, 0.1 mM EDTA, pH 7.4 at room
temperature with lipid concentration of 1 mM. Thereafter, the sample
was subjected to 15 passes through a 100-nm pore size polycarbonate
filter (Millipore, Bedford, USA), yielding liposomes of desired
composition. AV-PC or AV-PG (0.9 mol% of total lipid) was added to
the mixture of PC and PG prior to the solvent evaporation. The con-
centration of fluorescent lipid was determined spectrophotometri-
cally using anthrylvinyl extinction coefficient E367=9×103M−1cm−1

[25]. Hereafter, liposomes containing 10, 20 or 40 mol% POPG are
referred to as PG10, PG20 or PG40, with the subscript denoting the
type of energy donor (AV-PC or AV-PG).

2.3. Fluorescence measurements

Fluorescence measurements were performed at 25 °C using 10-
mm path-length quartz cuvettes using spectrofluorimeter equipped
with a magnetically stirred, thermostated cuvette holder (LS-50B,
Perkin-Elmer Ltd., Beaconsfield, UK). AV-PC or AV-PG emission spectra
were recorded with 367 nm excitation wavelength. Excitation and
emission slit widths were set at 5 nm. Fluorescence intensity
measured in the presence of cyt c at the maximum of AV emission
(434 nm) was corrected for reabsorption and inner filter effects using
the following coefficients [27]:

k =
1− 10−Aex

o

� �
Aex
o + Aex

a
� �

1−10− Aex
o + Aex

að Þ� �
Aex
o
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o
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a
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að Þ� �
Aem
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where Ao
ex, Aoem are the donor optical densities at the excitation and

emission wavelengths in the absence of acceptor, Aa
ex, Aa

em are the

acceptor optical densities at the excitation and emission wavelengths,
respectively. The efficiency of energy transfer was determined by
measuring the decrease of AV fluorescence upon addition of cyt c:

E = 1− QDA

QD
= 1− Qr ð2Þ

where QD, QDA are the donor quantum yields in the absence and
presence of acceptors, respectively, Qr is the relative quantum yield.

Steady-state fluorescence anisotropy of AV fluorophore was
measured at excitation and emission wavelengths of 367 and
434 nm, respectively, with excitation and emission band passes set
at 10 nm.

3. Theoretical background

3.1. Adsorption model

Cyt c binding to model membranes has been analyzed in terms of
the adsorption model based on scaled particle (SPT) and Gouy–
Chapman double-layer theories. This model allows for excluded area
interactions between the adsorbing protein molecules and depen-
dence of binding energy on the membrane surface coverage.

In the case of non-associating ligand and monomodal adsorption
the scaled particle theory isotherm is described by the expressions
[28]:

KaF = Φγ Φð Þ ð3Þ

lnγ = − ln 1− Φð Þ− e − 1 +
1

1− Φ
+

e

1−Φð Þ2 ð4Þ

where Ka is the association constant, F is the concentration of the
protein free in solution, γ is the activity coefficient of adsorbed
ligand, Φ is the fraction of surface area occupied by the adsorbed
protein, Φ=nB/Lout, B is the concentration of bound protein, n is the
number of lipid molecules covered by a single protein, Lout is the
concentration of accessible lipids related to total lipid concentration
(L) as Lout=0.5L, and ɛ is a shape parameter (for disc-like ligand
ɛ=1).

The equilibriumbinding constant is treated as consisting of electro-
static (Kel) and intrinsic or nonelectrostatic (Ko) terms: Ka=KelKo.
Electrostatic component of binding constant, dependent on electro-
static surface potential, environmental conditions (pH, ionic strength),
and degree of surface coverage by a protein is given by [29]:

Kel = exp − d
dNP

ΔFel NPð Þ
kBT

� �� 	
ð5Þ

where T is the temperature, kB is Boltzmann's constant, and ΔFel is the
total gain in electrostatic free energy, being a function of the number
of adsorbed protein molecules, Np=BNA:

ΔFel NPð Þ = Fsel NPð Þ− Fsel 0ð Þ− NPF
P
el ð6Þ

where Fel
s and Fel

p are the electrostatic free energies of a membrane
surface and a protein, respectively. The electrostatic free energy of a
spherical protein molecule with effective charge+ze and uniform
charge distribution can be written as [30]:

FPel =
z2e2

2eRP 1 + RP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πe2NAc
ekBT

s0
@

1
A

ð7Þ

with Rp standing for the protein radius, e the elementary charge, NA

Avogadro's number, ɛ the dielectric constant, and c the molar
concentration of monovalent ions. In terms of the Gouy–Chapman
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double-layer theory the electrostatic free energy of a membrane of
area Sm=SLLout is given by [31]:

Fsel =
2kBTSm

e
σ sinh−1 σ

a

� �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + σ2

p
+ a

� �
;

a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π−1ecNAkBT

q ð8Þ

where SL is the mean area per lipid molecule taken here as 0.65 nm2

for PC and PG, σ is the surface charge density given by:

σ =
−e
Sm

K1fALout

K1 + H +� �
bexp

−eψo

kBT

� 	 − zB

0
BB@

1
CCA ð9Þ

here fA is the mole fraction of anionic lipid, K1 is ionization constant
(for PG K1=3), [H+]b is the bulk proton concentration, ψo is
electrostatic surface potential of a membrane related to the surface
charge density as:

ψo =
2kBT
e

sinh−1 σ
a

� �
: ð10Þ

Numerical solution of the set of Eqs. (3)–(10) yields theoretical
isotherms that were fitted to the experimental data.

3.2. Analytical model of resonance energy transfer

The RET data obtained with PG20 and PG40 liposomes were
quantitatively interpreted in terms of the model of energy transfer on
a surface formulated by Fung and Stryer [32] and extended in our
previous works [19,33] to allow for distance dependence of orienta-
tion factor in two-dimensional systems. Cytochrome c–lipid systems
under studywere treated as containing one acceptor plane located at a
distance dc from the membrane center and two donor planes
separated by a distance dt (Fig. 1). Given that separation of acceptor
plane from the outer donor plane is da=|dc−d1|, while for the inner
plane da=dc+d2, relative quantum yield of the donor is given by

Qr = 0:5 ×

 Z ∞

0
expð−λÞexp −Cs

aS1 λð Þ� �
dλ

+
Z ∞

0
exp −λð Þexp −Cs
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! ð11Þ
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jdc −d1 j
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o

R

� 	6
 !" #
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S2 λð Þ =
Z∞

dc + d2

1− exp −λκ2
2 Rð Þ Rr

o

R

� 	6
 !" #

2πRdR ð13Þ

where R is the donor–acceptor separation, λ= t/τd; τd is the
lifetime of excited donor in the absence of acceptor, Cas is the concen-
tration of acceptors per unit area related to the molar concentrations
of lipids accessible to protein binding and bound acceptor (Ba=B) as
Ca
s=Ba/LoutSL. By representing Förster radius as Ro=[κ2(R)]1/6 URor, it

follows that

Rr
o = 979 n−4

r QDJ
� �1=6

J =

R ∞

0
FD λð ÞeA λð Þλ4dλR ∞

0
FD λð Þdλ

ð14Þ

here nr is the refractive index of the medium (nr=1.37), QD is the
donor quantum yield (0.8), J is the overlap between the donor
emission (FD(λ)) and acceptor absorption (ɛA(λ)) spectra [34]. When
the donor emission and acceptor absorption transition moments are
symmetrically distributed within the cones about certain axes Dx and
Ax, distance-dependent orientation factor is given by [35]:

κ2
1;2 Rð Þ = dDdA 3

dcb0:5dt
R

� 	2
− 1

� 	
+
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3

+
1− dA
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3
2
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3
2
cos2 ψD;A − 1

2

� 	
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where ψD,A are the cone half-angles, αD,A are the angles made by Dx

and Ax with the bilayer normal N. The axial depolarization factors 〈dDx〉
and 〈dA

x〉 are related to the experimentally measurable steady-state (r)
and fundamental (r0) anisotropies of donor and acceptor [35]:

dxD;A = F rD;A =r0D;A
� �1=2

: ð17Þ

3.3. Monte-Carlo calculations

The results of RET measurements in PG10AV-PC and PG10AV-PG
liposomes suggesting lateral redistribution of PG and PC molecules
upon cyt c binding were treated using a Monte-Carlo approach.
Positions of donors and acceptors were generated randomly in a
square cell assuming periodic boundary conditions to avoid edge
effects. The relative quantum yield averaged over all donors was
calculated from fluorophore coordinates as:

Qr =
1
ND

XND

j=1

1 +
XNAC

i=1

Rr
oκ

2 rij
� �
rij

0
@

1
A

6
2
64

3
75

−1

ð18Þ

where ND, NAC stand for the number of donors and acceptors,
respectively. The simulation procedure was repeated for at least
1000 fluorophore configurations until the standard deviation in Qr

was b2%. To test the simulation algorithm, we compared the RET data
obtained using the above model of Fung and Stryer [32] and the
Monte-Carlo calculation scheme. As illustrated in Fig. 2, the results
from analytical and numerical simulation approaches are in good
agreement.

Fig. 1. Schematic representation of relative bilayer positions and angular relationships
of donors (anthrylvinyl moiety of phosphatidylcholine or phosphatidylglycerol
fluorescent derivatives) and acceptors (heme groups of cytochrome c) in a lipid bilayer.
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While analyzing the case of protein-induced domain formationwe
assumed that total number of disk-shaped domains (Ndm) is equal to
the number of membrane-bound protein molecules (Ba), i.e. Ndm=
BaNA, NA is Avogadro's number. Total number of lipid molecules and
the number of PG (NPG

dm) and PC (NPC
dm) molecules in domains can be

written as:

Ndm
L = Ndm

PG + Ndm
PC =

BaNAπr
2
dm

SL
; Ndm

PG = fPGkN
dm
L ;

Ndm
PC = 1− fPGkð ÞNdm

L

ð19Þ

where k is the ratio of PG concentrations in the protein-affected
region (adsorption domain of radius rdm) at nonrandom and random
distribution of charged lipids. For molar fraction of donors (AV-PC or
AV-PG) fD, total number of AV-PC or AV-PG molecules in outer
monolayer is given by:

Ntot
AV − PC = Ntot

AV − PG = LoutfDNA: ð20Þ

Given that the fraction of PG (fPGdm) and PC (fPCdm) in domains is
equal to

f dmPG =
BaNAfPGkπr

2
dm

LoutNAfPGSL
=

Bakπr
2
dm

LoutSL
; f dmPC =

Baπr
2
dm 1− fPGkð Þ

LoutSL 1− fPGð Þ ð21Þ

the number of AV-PG molecules in domain (NAV-PG
dm ) and non-domain

(NAV-PG
ndm ) regions can be expressed as:

Ndm
AV−PG = Ntot

AV−PG f dmPG =
Bakπr

2
dmNAfD
SL

;

Nndm
AV−PG = LoutNA fD − Ndm

AV−PG:
ð22Þ

Surface densities of AV-PG in domain (δAV-PGdm ) and non-domain
(δAV-PGndm ) regions are given by:

δdmAV−PG =
Ndm
AV−PG

BaNAπr
2
dm

=
fDk
SL

;

δndmAV−PG =
Nndm
AV−PG

LoutSLNA − BaNAπr
2
dm

=
fD LoutSL − kBaπr

2
dm

� �
SL LoutSL − Baπr

2
dm

� � : ð23Þ

Analogously, for AV-PC one obtains:

Ndm
AV−PC = Ntot

AV−PCf
dm
PC =

Baπr
2
dmNAfD 1− fPGkð Þ
SL 1− fPGð Þ ;

Nndm
AV−PC = LoutNAfD − Ndm

AV−PC ð24Þ
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2
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SL 1− fPGð Þ ;

δndmAV−PC =
fD

SL 1− fPGð Þ 1−
fPG LoutSL − kBaπr

2
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LoutSL − Baπr

2
dm

0
@

1
A: ð25Þ

Eqs. (23) and (25) were used to calculate the number of donors in
domain and non-domain regions for a square cell with the side length
taken as 10 Ro (here Ro=0.67 Ro

r). The number of acceptors was
determined by multiplying protein surface density (Cas) by the cell
square (Sc) (NAC=Ca

sSc). The simulation program was scripted in
Mathcad 2001 Professional.

4. Results

Resonance energy transfer between AV-PC or AV-PG and the heme
group of cyt c was examined by monitoring the decrease of donor
fluorescence upon addition of the acceptor. In Figs. 3 and 4 relative

Fig. 3. Relative quantum yield of AV-PC and AV-PG in PC/PG liposomes containing
10 mol% PG as a function of cytochrome c concentration. Total lipid concentration (L):
5 μM (A), 20 μM (B). Experimental data are depicted by triangles: AV-PC (▴), AV-PG
(△). The results from Monte-Carlo calculations (dc=3.6 nm, n=11,=22 μM−1) are
denoted by circles: AV-PC (●), AV-PG (○).

Fig. 2. Comparison of relative quantum yields of a donor calculated from the analytical
model of Fung and Stryer (symbols) with those derived from the Monte-Carlo
simulation (solid lines). Re is the distance of closest approach between donor and
acceptor. In the case of two donor planes and one acceptor plane the calculations were
performed with Re=0, distance between acceptor plane and bilayer midplane
dc=3 nm and separation of donor planes dt=d1+d2=0.3 nm.
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quantum yields of AV-PC and AV-PG are plotted as a function of cyt c
concentration for different types of liposomes. It appeared that at the
lowest PG content, 10 mol%, energy transfer from the anionic donor
AV-PG is more efficient than that from neutral donor AV-PC. This can
be interpreted as arising from an accumulation of acidic lipids in the
vicinity of adsorbed protein. In contrast, the RET profiles observed for
PG20 and PG40 liposomes are featured by the absence of any
statistically significant difference between (i) relative quantum yields
of AV-PC and AV-PG on the one hand and (ii) PG20 and PG40 Qr

values, on the other hand. The former observation suggests that cyt c
is incapable of producing marked segregation of anionic lipids in the
model membranes containing 20 or 40 mol% PG. This allowed us to
quantitatively analyze PG20 and PG40 RET data in terms of the above
analytical model (Eqs. (11)–(16)) describing energy transfer between
donors and acceptors randomly distributed in two dimensions. Since
such analysis requires knowing of surface acceptor concentration, 2D
RET model was combined with the model of electrostatically
controlled adsorption, in accordance with the approach developed
in our previous works [36,37]. This approach permits simultaneous
determination of both structural (heme distance from the bilayer
center) and binding (intrinsic association constant) characteristics
from the global fitting of multiple arrays of RET data acquired over
a range of experimental conditions. The principal advantage of
global analysis is associated with the possibility of the most correct

estimation of the model parameters due to minimization of their
cross-correlation [38]. In the present study optimization procedure
was applied to the datasets obtained for two types of donors at
varying PGmole fraction (0.2 or 0.4), protein and lipid concentrations.
While choosing the model parameters tentatively divided into two
categories, assigned and optimized, we proceed from the following
considerations.

4.1. Assigned parameters

d1, separation between the outer donor plane and bilayer
midplane, was allowed to vary within the maximum possible limits
0–2.3 nm (membrane half-width) assuming that cytochrome c is
capable of perturbing the donor position in the outer monolayer.

d2, separation between the outer donor plane and bilayer
midplane, was varied in the limits 0.15–0.3 nm, consistent with i)
the size of AV fluorophore (ca. 0.7×0.3 nm), and ii) 1H-NMR and
fluorescence quenching data suggesting that in a lipid bilayer
nonpolar AV moiety resides in the region of terminal methyl groups,
preferentially orienting parallel to acyl chains [26,39].

dD
x , donor depolarization factor, was calculated from Eq. (17), with

fundamental anisotropy of anthrylvinyl fluorophore (r0D) taken as
0.08 [40], and rD value experimentally measured at excitation and
emission wavelengths 367 and 430 nm, respectively (Fig. 5).

dA
x, acceptor depolarization factor, was determined from Eq. (16),

allowing for the linear dichroism data indicating that transition
moment of cyt c lies within the porphyrin plane [41], i.e. ψA=π/2,
dA
x=–0.5.
α, the angle between porphyrin plane and bilayer surface, was

taken on two limiting assumptions: αA=0 (porphyrin plane is
parallel to bilayer surface) or αA=π/2 (porphyrin plane is perpendi-
cular to bilayer surface), because preferable orientation of membrane-
bound cyt c is not yet unequivocally defined.

n, the number of lipid molecules per molecule of bound protein
was evaluated from geometric considerations. Cross-section of
unperturbed cyt c molecule (8–9 nm2) corresponds to the surface
area occupied by 11–13 lipid headgroups. Taking into account that in
the interfacial environment with lowered pH cyt c may undergo
transition to a molten globule-like state [42] in which hydrodynamic
radius of a protein was reported to increase by no more than 20% [43],
parameter n was allowed to vary in the limits 11–19.

z, effective protein charge, was taken as 4.1, the value derived in our
previous study from global analysis of the results of RET experiments
conducted at varying pH, ionic strength, anionic lipid content, and
protein-to-lipid molar ratio [36]. The fact that effective charge is less
than net charge of cyt c (+9), is likely to arise from the limitations of

Fig. 4. Relative quantum yield of AV-PC and AV-PG in PC/PG liposomes containing
20 mol% PG (A) or 40 mol% PG (A) as a function of cytochrome c concentration.
Experimental data are depicted by triangles and circles: AV-PC, L=5 μM (▴); AV-PG,
L=5 μM (△); AV-PC, L=20 μM (●); AV-PG, L=20 μM (○). Solid lines show theoretical
curves calculated from the analytical RET model (Eqs. (11)–(16)) with the following
parameters: dc=2.1 nm, n=11, Ko=22 μM−1, z=4.1.

Fig. 5. Anthrylvinyl fluorescence anisotropy measured with λex=367 nm and λem=
434 nm for different types of PC/PG liposomes. Lipid concentration was 50 μM.
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double-layer theory, associated, particularly, with finite size of the
protein relative to Debye length [29].

4.2. Optimized parameters

dc, the distance between heme groups of cyt c (acceptor plane) and
membrane midplane (Fig. 1). Maximum meaningful value of this
parameter, corresponding to surface location of cyt c, can be estimated
as dcmax=0.5 dm+Rp+rt, where dm is the membrane width (4.6 nm),
Rp is the protein radius (ca. 1.7 nm), while rt stands for displacement
of heme group off the molecule center (ca. 1.1 nm), thus yielding
dc
max=5.1 nm.
Ko, intrinsic association constant independent of the membrane

surface charge. Ko represents invariant part of the association
constant, while Kel is a function of acidic lipid mole fraction, degree
of its protonation, ionic strength and surface coverage.

Allowing for predominant role of electrostatic forces in cyt c
membrane interaction quantitative interpretation of the results
presented here was based on the assumption that protein association
with differently charged lipid bilayers can be consistently described in
terms of the unified intrinsic association constant and binding
stoichiometry. The values of Ko and dc were estimated by nonlinear
least-squares technique involving minimization of the following error
function:

χ2 =
1
N

XN
i=1

Qe
ri−Q t

ri

� �2 ð26Þ

where N is the total number of experimental points being
simultaneously analyzed (N=76), Qr

e is the experimental Qr value,
Qr
t is the relative quantum yield calculated by numerical integration

of Eqs. (11)–(17), with Ba being calculated numerically from the
Eqs. (3)–(10).

The values of intrinsic association constant recovered from the
global fit of PG20 and PG40 datasets (Table 1) were used to estimate
the concentration of bound protein (Ba) for PG10 liposomes and then
calculate the number of acceptors (NAC) and donors (NAV-PC,AV-PG

dm,ndm ) in a
simulation cell. This created a basis for implementation of the Monte-
Carlo algorithm. For PG10AV-PC system, the number of donors in
domains NAV-PC

dm proved to take on nonzero value (NAV-PC
dm =1) only at

the highest surface densities of cyt c, thereby rendering RET profiles
insensitive to variations in domain radius (rdm) and the extent of PG
segregation in the interaction zone (k). Therefore, the RET data
obtained for PG10AV-PC liposomes were treated using the Monte-Carlo
approach with being the only optimized parameter. Next, the
recovered value was fixed and (rdm,k) sets providing the best
agreement between simulated and experimental data were derived
from the Monte-Carlo analysis of PG10AV-PG RET curves.

5. Discussion

Cyt c–lipid interactions have long been in a focus of considerable
research efforts yielding insights into a number of molecular level
details of this process, viz. i) essentially electrostatic nature of cyt c
complexation with lipids [20–22], ii) coverage-dependent protein
insertion into membrane interior [23,44,45], and iii) destabilizing

effect of anionic lipids on cyt c tertiary structure [42,46,47], and iv)
structural reorganization of composite membranes upon protein
binding [10,11]. The present RET study of cyt c association with
negatively charged lipid bilayers provided quantitative information
about protein location relative to lipid–water interface and the degree
of lipid demixing in PC/PG model membranes depending on PG mole
fraction. The observation that in PG20 and PG40 systems the
efficiencies of energy transfer are similar for neutral (AV-PC) and
negatively charged (AV-PG) donors has led us to assume that in these
types of liposomes cyt c does not cause PGmolecules to accumulate in
the interaction zone, i.e. lipid distribution is close to random. This
assumption, together with the idea that cyt c binding to PC/PG
membranes differing in PG proportion is governed by identical,
primarily electrostatic mechanisms, provide the prerequisites for
PG20 and PG40 data to be globally analyzed in terms of the combined
RET-adsorption model. The recovered values of intrinsic association
constant ensuring the best agreement between the calculated and
experimental relative quantum yields of AV-PC and AV-PG, were
found to fall in the range 20–40 μM−1. Multiplying these Ko values by
electrostatic term Kel, which depends on PG proportion, ionic strength,
pH and degree of membrane coverage with the protein (Eqs. (5)–
(10)), yields effective binding constants Ka of the magnitude 105–
106 M−1. As illustrated in Fig. 6, Ka increases with PG mole fraction,
but decreases with cyt c concentration due to screening of the
membrane surface charge by the adsorbed protein.

Another parameter recovered from the global data analysis is dc,
the distance between the heme groups of cyt c and the bilayer
midplane. In the model membranes containing 20 or 40 mol% PG this
distance was found to lie between 1.6 and 2.7 nm.

Notably, the errors given in Table 1 for estimates were obtained
assuming the possibility of protein-induced displacement of the
donors located in the outer monolayer from the membrane core to
interfacial region. Such a possibility, together with the uncertainty in
heme positionwithin interfacially loosened protein structure does not
allow us to draw unambiguous conclusions on the depth of
cytochrome c membrane penetration. It is noteworthy in this respect
that the mode of cyt c membrane interaction has been found to
depend on the surface coverage [23,44]. Peripheral electrostatic
binding prevails at low protein surface densities (Lout/P ratios greater
than 20) while at Lout/P ratios approaching the saturation coverage
(ca. 11) cyt c tends to penetrate into membrane interior [23]. It has
been hypothesized that protein insertion into lipid bilayer is triggered
by a certain critical surface coverage at which lateral pressure of two-
dimensional “adsorbate gas” is close to its threshold value [45]. Since
the lowest Lout/P value reached in our experiments is 80 (43 on
assumption of complete protein binding) it might be expected that cyt

Table 1
Structural and binding parameters characterizing cyt c interaction with PC/PG model
membranes containing 20 or 40 mol% PG.

Binding
stoichiometry, n

Intrinsic association
constant, Ko, μM−1

Heme distance from
bilayer center, dc, nm

χ2

αA=π/2 αA=0

11 22±4 2.3±0.4 2.0±0.6 9.1×10−4

19 34±8 2.2±0.5 2.1±0.5 9.9×10−4

Fig. 6. Coverage-dependent association constants calculated from Eqs. (5)–(10) with
Ko=22 μM−1.
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c association with the model membrane under study is mainly driven
by electrostatic forces.

In contrast to PG20 and PG40 vesicles, where the RET curves
obtained for either AV-PC or AV-PG as energy donors were virtually
indistinguishable, PG10 energy transfer from AV-PG was more
effective compared to AV-PC (Fig. 3). The observed differences
between PG10AV-PC and PG10AV-PG RET profiles are most likely to
originate from lateral redistribution of PG and PC molecules
accompanied by enrichment of the interaction zone with acidic lipids.
To account for this effect we designed the Monte-Carlo simulation in
which AV-PG donors were considered as being randomly distributed
within disk-shaped domains of radius rdm centered at each acceptor's
location. Our main goal was to determine characteristic domain size,
i.e. dimensions of the protein-affected region where PG concentration
is k times higher than that for a random lipid distribution. Simulation-
based fitting of PG10AV-PC and PG10AV-PG RET data with k being varied
from 1 to 10 (the value corresponding to complete replacement of PC
with PG) has revealed that the size of the zone with increased PG
concentration does not exceed 4 nm (Fig. 7). The fact that the
recovered rdm estimates are of the same order of magnitude as the
protein diameter (ca. 3.4 nm) is strongly suggestive of cyt c property
to induce local demixing of PG and PC molecules in PG10 membranes.
Notably, dc values recovered for PG10 systems (3.6 nm) were greater
than those for PG20 and PG 40 systems suggesting shallower protein
location at PG content 10 mol%.

Taken together, our results are in good agreement with the
predictions of theoretical model proposed by May et al. [16]. This
model considers domain formation triggered by the adsorption of
basic globular proteins on the surface of binary lipid membranes with
varying proportions of acidic lipids. Based onminimization of a mean-
field free energy functional and further numerical solution of Poisson–
Boltzmann equation, the authors evaluated the extent of lipid
redistribution for the cases of (i) equal surface charged densities of
the protein and the membrane; (ii) a weakly charged protein, highly
charged membranes; and (iii) a highly charged protein, and a weakly
charged membrane. The most pronounced exchange of the neutral
and acidic lipids in the interaction zone was found to occur in the last
case, when highly charged protein adsorbs on weakly charged
membrane, with the extent of lipid segregation being determined by
the balance between the gain in electrostatic adsorption energy and
the loss of lipid mixing entropy. It is noteworthy in this context that
not only electrostatic, but also nonelectrostatic mechanisms asso-
ciated with membrane elasticity may lower the interaction free
energy thereby favoring the domain formation [16–18].

In conclusion, the present study clearly demonstrates that the
lipid-segregating propensity of cyt c can be controlled by the
membrane surface charge density. As follows from the comparison
of energy transfer efficiencies in PC/PG systems containing anthrylvi-
nyl-labeled neutral (AV-PC) or negatively charged (AV-PG) donors, at
PG content 10 mol%, cyt c produces formation of lateral domains
enriched in acidic lipids, while at higher PG mole fractions (20 and
40 mol%) lipid distribution is close to random. The size of lipid
domains deduced from the Monte-Carlo analysis of PG10 RET data
proved to be comparable to cyt c dimensions suggesting that lipid
demixing takes place locally, in the immediate vicinity of the adsorbed
protein. The revealed peculiarities of cyt c lipid interactions may have
important functional implications as a means of modulating electron-
transfer and apoptotic propensities of this protein.
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