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Abstract Fluorescence spectroscopy is one of the most
powerful tools for characterization of a multitude of
biological processes. Of these, the phenomenon of protein
oligomerization attracts especial interest due to its crucial
role in the formation of fibrillar protein aggregates (amyloid
fibrils) involved in ethiology of so-called protein misfolding
diseases. It is becoming increasingly substantiated that protein
fibrillization in vivo can be initiated and modulated at
membrane-water interface. All steps of membrane-assisted
fibrillogenesis, viz., protein adsorption onto lipid bilayer,
structural transition of polypeptide chain into a highly
aggregation-prone partially folded conformation, assembly
of oligomeric nucleus from membrane-bound monomeric
species and fiber elongation can be monitored with a mighty
family of fluorescence-based techniques. Furthermore, the
mechanisms behind cytotoxicity of prefibrillar protein
oligomers are highly amenable to fluorescence analysis. The
applications of fluorescence spectroscopy to monitoring
protein oligomerization in a membrane environment are
exemplified and some problems encountered in such kinds
of studies are highlighted.
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Introduction

Among a huge variety of biological processes probed by
fluorescence spectroscopy one of the most extensively
studied over the past decade is protein aggregation [1, 2].
This phenomenon is ubiquitous in biomedical research,
pharmaceutical, food industries and biotechnology. The
propensity for self-association is an inherent property of
polypeptide chain. The tendency of hydrophobic amino
acid residues to minimize their contacts with polar solvent
(hydrophobic effect), along with hydrogen-bonding and ion
pairing are responsible for protein folding to compact
structured native state. However, this state is marginally
stable because opposing factors, such as the loss of
configurational entropy and repulsive electrostatic interac-
tions disfavor protein compactization [3]. For this reason,
any change in external conditions (temperature, pH, ionic
strength, the presence of surfaces or interfaces, etc.) may
induce protein transition into highly aggregation-prone
conformation. Protein aggregation is frequently considered
as alternative folding [4], since intrachain and interchain
interactions are driven by the common forces. There exist
numerous types of protein aggregates which can be
categorized into classes using different criteria, such as
functional relevance (naturally occurring/pathological),
morphology (amorphous/ordered), solubility (soluble/
insoluble), stability (covalent/noncovalent), reversibility
(reversible/irreversible) [5]. One type of the ordered
protein aggregates, amyloid fibrils currently attracts the
greatest attention due to its implication in molecular
etiology of a number of so-called conformational diseases,
including Alzheimer’s, Parkinson’s, Huntingtons diseases,
type II diabetes, spongiform encephalophaties (prion
diseases) [6–8]. These aggregates are featured by a core
cross-β-sheet structure in which polypeptide chains are
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oriented in such a way that β-strands run perpendicularly
to the long axis of the fibril, while β-sheets propagate in
its direction. Amyloid fibrils usually contain from 2 to 6
laterally associated or twisted protofilaments, each 2–5 nm
in diameter. In electron and atomic force microscopy
images mature fibrils are commonly seen as unbranched
filaments of 4–13 nanometers in diameter and up to a
micrometer or more in length [9, 10].

A distinctive kinetic feature of the protein fibrillization is
the existence of a slow nucleation (lag phase) and fast
elongation (growth phase). During the lag phase protein
monomers assemble into oligomeric nuclei, being the
highest energy species along the polymerization pathway.
Once a critical nucleus has formed, its further elongation
becomes energetically favorable, thereby resulting in the
exponential fibril growth [11].

Fibrillization-favoring conditions implicate structural trans-
formation of polypeptide chain into a highly aggregation-
prone partially folded conformation [12]. In vitro, these
conditions are created by lowering pH, elevating temperature,
adding organic solvents or denaturants, while in vivo
abnormal partial unfolding may arise from mutations,
oxidative or heat stress or protein adsorption at interfaces
[13]. It is the presence of large amount of interface, formed
by cellular membranes, that determines the principal differ-
ence between in vitro and in vivo amyloid growth. Both the
formation of amyloid fibers and their cytotoxic action are
thought to be membrane-related processes [14–16]. On the
one hand, lipid bilayer, a basic structural element of
biological membranes, may act as an effective catalyst of
fibrillogenesis, providing an environment where protein
molecules adopt conformation and orientation favoring their
self-assembly. On the other hand, cell membrane represents a
direct target for the toxic oligomeric species which may
cause membrane destabilization and subsequent cell death
via i) formation of non-specific ionic channels [17, 18], ii)
modification of the intracellular redox status and free
calcium level [19, 20] and iii) uptake of lipids into the
growing fiber [21].

Membrane-related prerequisites for protein oligomeriza-
tion include: i) protein accumulation at lipid-water interface,
commonly electrostatically-driven; ii) structural transition of
polypeptide chain into aggregation-competent conformation
enriched in the exposed areas complementary in terms
of hydrophobicity, charge topography, hydrogen-bonding
capability; iii) electrostatic attraction between the dipoles of
antiparallel α-helixes; iv) protein self-association promoted
by hydrophobic mismatch; v) aggregation-favoring arrange-
ment of the solvent exposed and bilayer-buried portions of
polypeptide chain.

Both oligomer assembly and the mechanisms of their
toxicity are highly amenable to fluorescence analysis.
Fluorescence techniques, both traditional (steady-state and

time-resolved fluorescence, quenching, anisotropy meas-
urements, resonance energy transfer) and advanced (single
molecule fluorescence spectroscopy, total internal reflection
fluorescence microsopy, fluorescence correlation spectros-
copy, etc.) being employed with intrinsic and extrinsic
protein fluorophores; amyloid-specific fluorescent dyes or
membrane fluorescent probes can provide unique structural
and kinetic information on the protein-membrane binding,
protein conformational changes, disposition of polypeptide
chain relative to lipid-water interface, the type of oligomeric
species and the extent of protein fibrillization [22, 23].

Fluorescence probing of protein-membrane binding

Membrane interactions of numerous amyloidogenic proteins
and peptides, including A-beta peptide (Aβ), α-synuclein,
prion protein (PP), transthyretin (TTR), islet amyloid poly-
peptide (IAPP), immunoglobulin light chain (IG), lysozyme
(Lz) have been examined by a multitude of fluorescence
methods (Table 1), based on the measurements of fluores-
cence intensity, anisotropy, lifetime, resonance energy trans-
fer. Quantitative characteristics of the protein-membrane
binding are commonly derived from the analysis of adsorption
isotherms which in the simplest way can be obtained by
detecting the changes in fluorescence intensity of intrinsic or
extrinsic fluorophores upon varying protein or lipid concen-
tration. In such kind of studies it is naturally to expect that the
binding curves per se would contain information on the
protein oligomerization state.

To exemplify, I will dwell on our data concerning
membrane interactions of lysozyme, a multifunctional
protein, displaying in its native state antimicrobial, anti-
tumor, and immunomodulatory activities. Lysozyme is a
hydrolytic enzyme which catalyzes cleavage of the pepti-
doglycan layer in bacterial cell wall, thereby promoting cell
aggregation and loss of their viability. Point mutations in
human lysozyme render it inclined to incorrect folding and
forming amyloid fibrils, associated with a familial systemic
amyloidosis, a disease in which aggregated protein tends to
form deposits in liver, kidneys and spleen [48]. Importantly,
all biological activities of lysozyme can be modulated by its
lipid-associating abilities. Membrane binding of this protein
is driven by ionic and hydrophobic interactions [49, 50].
Due to its positive charge over a broad pH range (pI ca.
11.0), lysozyme has a highest affinity for anionic phospho-
lipids. We studied lysozyme adsorption onto liposomes
composed of zwitterionic lipid phosphatidylcholine (PC) and
varying amount of anionic lipids—phosphatidylglycerol
(PG), phosphatidylserine (PS) or cardiolipin (CL). To detect
protein-membrane binding, lysozyme was labeled with
fluorescein (Fl), a widely used environmentally sensitive
fluorophore. The complexation of tagged protein with
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liposomes manifested itself in the decrease of fluorescein
emission. This effect may be a consequence of fluorophore
transfer into interfacial membrane region where pH is lower
compared to the bulk phase because of proton accumulation
near negatively charged surfaces. Fluorescein emission is
known to display a complex pH dependence, reflecting
equilibrium between several ionic forms, of which only
monoanion and dianion forms are fluorescent [51]. The shift
of equilibrium between the fluorescent and non-fluorescent
fluorescein species upon the association of labeled lysozyme
with liposomal membranes is likely to account for the
observed fluorescence decrease. Monitoring the changes in
fluorescence intensity as a function of lipid concentration
allowed us to obtain adsorption isotherms for liposomes
differing in chemical nature and proportion of anionic
phospholipids. It appeared that at the molar fraction of

anionic phospholipid not exceeding 10 mol % the binding
curves have typical hyperbolic shape. However, upon further
increasing the surface charge of liposomal membranes the
shape of adsorption isotherms was found to change from
hyperbolic to sigmoidal. To explain this pattern, we have
analyzed fluorescence binding data in terms of the adsorption
models purposefully developed for protein-lipid systems on a
basis of scaled particle and double layer theories [46]. These
models offer the advantages of allowing for excluded area
interactions between the adsorbing protein molecules and
electrostatic effects (i.e. dependence of association constant
on surface coverage). Comparison of several data treatment
strategies showed that only the model assuming self-
association of the adsorbed protein is capable of describing
the behaviour of binding curves upon increasing the mole
fractions of anionic phospholipid. A minimum number of the

Table 1 Fluorescence-based analysis of membrane interactions of amyloidogenic proteins and peptides

Protein or peptide Membrane constituents Fluorescence technique Ref.

α -synuclein PC, PS, PA, PE, SM, Chol Fluorescence correlation spectroscopy [24]

α -synuclein SM, PC, PG DPH anisotropy [25]

α -synuclein PC, PS, PG Laurdan, NBD, Tyr fluorescence [26]

Aβ peptide GM1, Chol, SM DAC labeling RET between DAC and BODIPY [27]

Aβ peptide Total brain lipids DPH anisotropy [28]

Aβ peptide Erythrocyte membrane DPPE-ANS anisotropy [29]

Aβ peptide DPH, TMA-DPH, Laurdan [30]

Aβ peptide PC, gangliosides Trp fluorescence [31]

Aβ peptide PA, PS, PI, PIP, PIP2, CL, PC, PE,
SM, Chol, DG, gangliosides

NBD-PA, NBD-PE fluorescence [32]

Aβ peptide PA, PG RET fluorescein—Texas Red [33]

Aβ peptide GM1, Chol, SM ANS, ThT assays [34]

Aβ42 peptide Total brain lipids Laurdan generalized polarization DPH anisotropy [35]

Prion protein PS Trp fluorescence [36]

Immunoglobulin light chains PA Trp fluorescence ThT assay [37]

Transthyretin PC, PE, PS, SM, Chol DPH anisotropy [38]

Serum amyloid A PC Trp fluorescence [39]

Endostatin PC, PS, PG Trp fluorescence, RET Trp—dansyl [40]

Islet amyloid polypeptide PC, PG RET ThT—BODIPY-PC ThT assay Alexa Fluor 568 labeling [41]

Islet amyloid polypeptide PG/PC vesicles, liposomes from
pancreas lipids

ThT assay, Rhodamine-IAPP anisotropy [42]

Surfactant protein C PC, PG, PE RET Tyr—bis-ANS [43]

Insulin PC, PE, PS ThT assay [44]

α-lactalbumin PC, PG, Chol di-8-ANEPPS [45]

Lysozyme PC, PG, PS, CL DPH anisotropy, Trp fluorescence, FITC labeling [46]

Peptide from apoC-II PC ThT assay [47]

CL cardiolipin; DG diacylglycerol; Chol cholesterol; PA phosphatidic acid; PG phosphatidylglycerol; PS phosphatidylserine; PC phosphatidylcholine;
PE phosphatidylethanolamine; PI phosphatidylinositol; PIP PI 4-phosphate; PIP2 PI 4,5-P2; SM sphingomyelin, IAPP islet amyloid polypeptide;
BODIPY-PC 1-hexadecanoyl-2-(4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-sn-glycero-3-phosphocholine; ThT thioflavin
T; DPH 1,6-diphenyl-1,3,5-hexatriene; NBD 2-N-4-nitrobenzo-2-oxa-1,3-diazole; ANS 1-anilinonaphthalene-8-sulfonic acid; DAC
7-diethylaminocoumarin-3-carbonyl; DPPE-ANS N-(5-dimathylaminonaphthalene-1-sulfonyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanol-
amine; di-8-ANEPPS 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphtyl]vinyl] pyridinium betaine; TMA-DPH trimethylammonium-
diphenylhexatriene; RET resonance energy transfer
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protein molecules in aggregate required for reproducing
sigmoidal shape of the adsorption isotherms was estimated to
be four, implying that tetramers represent a preferential form
of lysozyme oligomers. This example illustrates that even the
simplest kind of fluorescence experiment based on intensity
measurements can capture subtle details of protein-membrane
binding and provide the proofs for protein oligomerization
hardly achievable by other spectroscopic techniques or direct
methods such as ultracentrifugation or gel filtration. The
recovered strengthening of lysozyme aggregation propensity
upon increasing membrane charge seems to be of interest in
the context of its amyloidogenic properties suggesting that
fibril nucleation may occur on a membrane template.

Fluorescence monitoring of protein structural changes

Another aspect of the problem, in which fluorescence
spectroscopy may prove helpful, concerns structural transi-
tion of interfacially adsorbed proteins into aggregation-
competent state. It is becoming increasingly substantiated
that the highest propensity to form oligomers is inherent to
a partially folded protein conformation resembling pre-
molten globule state [12]. Lipid bilayer can lower the
activation energy barrier for protein unfolding providing an
environment with reduced pH and decreased dielectric
constant whose concerted action enhances side chain charge
repulsion, thereby giving rise to a more open structure with
exposed aggregation-prone areas. Fluorescence parameters
which can be correlated with protein unfolding and self-
assembly in an aqueous phase include emission maximum
wavelength and intensity, lifetime, anisotropy, quenching
and resonance energy transfer efficiencies [52]. However,
for proteins confined to a lipid phase situation becomes
more complicated because the observed spectral effects
may arise from several interfering processes, viz.: i) specific
orienting of the adsorbed protein; ii) insertion of certain
polypeptide segments into bilayer core; ii) modification of
the protein structure; iii) formation of the protein dimers
and higher order oligomers. Furthermore, since all these
processes occur on a quasi two-dimensional surface, their
patterns depend not only on the protein concentration, but
also on lipid concentration. Accordingly, relative contribu-
tions of spectral responses from monomeric and oligomeric
protein species would vary with lipid-to-protein molar ratio
(L:P). For instance, while examining the quenching of
lysozyme intrinsic fluorescence by water-soluble collisional
quenchers iodide and acrylamide, incapable of penetrating
into the hydrophobic membrane core, we found solvent
accessibility of tryptophan residues to increase at low
surface coverage (L:P>100), suggesting partial unfolding
of the protein molecules in a membrane environment.
However, at high surface coverage (L:P∼5–50), where

lysozyme oligomers are supposed to prevail, tryptophan
residues exposed upon unfolding seem to be shielded from
the aqueous phase due to formation of intermolecular
contacts between monomeric species, thereby resulting in
the opposite effect—decrease of the quenching efficiency.

Detection of protein aggregates with extrinsic
fluorophores

Complementary to intrinsic fluorophores in characterization
of various types of the protein aggregates are extrinsic
fluorescent dyes, of which most extensively used are
classical polarity-sensitive probes, such as 8-anilino-1-
naphthalenesulfonate (ANS), 4,4′-dianilino-1,1′-binaphthyl-
5,5′-disulfonate (bis-ANS), Nile Red (NR), molecular rotor
4-(dicyanovinyl)-julolidine (DCVJ), traditional amyloid-
specific dyes Congo Red (CR) and Thioflavin T (ThT) [23,
53–55]. New classes of dyes are continuously testing for
amyloid specificity [56–58]. The probes like ANS or Nile
Red are highly suitable for assessment of surface hydropho-
bicity which is directly related to the protein aggregation
tendency [23]. Importantly, fluorescent probes can display
selectivity to protein aggregates differing in their type and
size, like molten globule intermediates, early oligomers,
spherical aggregates, protofibrils and mature fibrils, as was
demonstrated, particularly, for transthyretin [59].

In this context it is important to note that correct
fluorescence analysis of membrane-mediated protein oligo-
merization and fibrillization requires discriminating between
spectral signals from the fluorophores buried in the hydropho-
bic membrane core, located in the nonpolar interior of a protein
or residing in the contact area between two associating protein
molecules [60]. The fact that in protein-lipid systems most
fluorescent probes exhibit preferential binding to a lipid
bilayer, may substantially complicate detection of conforma-
tional transitions and self-association of interfacially-adsorbed
proteins. Ideal fluorophore for sensing conformationally
altered aggregation-prone protein states should not respond
for any perturbations in a membrane structure. It seems that
some fluorophores meet this requirement. For instance,
according to our observations, xanthene dye rhodamine 101
(R101) proved to be indifferent to the presence of liposomes.
However, in hemoglobin (Hb)—lipid systems devoid of free
protein by gel-filtration emission maximum of R101 exhibited
short-wavelength shift coupled with fluorescence intensity
changes. To explain this finding, we assumed that R101
senses lipid-induced unfolding of Hb tertiary structure and
splitting of heme-globin bonds.

Another example involves classical amyloid-specific dye
Congo Red. We found that this dye can effectively interact
with neutral and positively charged bilayers, with maximum
in differential absorption spectra being observed at 524 nm,

948 J Fluoresc (2011) 21:945–951

Author's personal copy



the value different from that characteristic of amyloid-bound
dye (545 nm). However, no Congo Red binding to negatively
charged bilayers has been detected. These findings suggest
that this dye can be used for detection of amyloid growth in
protein-lipid systems, especially for identification of amyloid
fibrils induced by anionic lipids.

On the contrary, applicability of the most widespread
amyloid-specific probe, Thioflavin T for detection of fibrillar
aggregates at lipid-water interface seems to be limited by the
capacity of this probe for non-specific association with both
lipid bilayer and proteins containing β-sheet structures in its
native state, as was demonstrated in our studies for lysozyme.
These properties of Thioflavin T must be taken into account
while monitoring the process of fibrillogenesis in protein-lipid
systems where proportion of amyloid aggregates can be
relatively low and incorrect interpretation of the dye spectral
responses may lead to false positive result.

Optimal strategy for fluorescence analysis of protein
aggregation

In general, the most sensible strategy for fluorescence-based
analysis of the protein oligomerization in a membrane
environment lies in correlating the data from a multitude of
fluorescence methods. Furthermore, it is advisable to use each
method with both intrinsic and extrinsic fluorophores differ-
ing in their physicochemical properties, responsiveness to the
perturbations in protein or membrane structure, sensitivity to
the changes in protein aggregation state, etc. For example,
while employing resonance energy transfer technique to
determine the influence of anionic lipids on oligomerization
state of lysozyme, we collected information from several
donor-acceptor pairs produced by fluorescent labeling of the
protein: tryptophan—pyrene, pyrene—fluorescein and
fluorescein—rhodamine. All these pairs reported enhance-
ment of energy transfer with increasing total protein concen-
tration, thereby providing arguments in favor of lysozyme
self-association at the negatively charged lipid-water inter-
face. Quantitative analysis of the experimental data in terms of
the model of energy transfer in two dimensions revealed
average distance between fluorescein and rhodamine tags to
be two times as large as the dimensions of lysozyme molecule
suggesting that oligomeric species are represented mainly by
the protein dimers and tetramers. It is also worth mentioning
that the most pronounced increase of energy transfer
efficiency was observed at lipid-to-protein molar ratio about
40, pointing to the existence of a certain surface coverage
critical for the formation of lysozyme self-associates.

At last, it should be noted that fluorescence techniques
offer a versatile platform for analyzing protein oligomeriza-
tion from the viewpoint of its coupling with other membrane
processes, for instance, lipid segregation into lateral domains.

Specifically, comparing the efficiencies of energy transfer
between intrinsic protein fluorophores and anthrylvinyl-
labeled lipids led us to propose that lysozyme and another
basic protein, cytochrome c give rise to demixing of neutral
and anionic lipids in the binary model membranes [61, 62].
Notably, lipid segregation and lysozyme self-association
were observed under similar experimental conditions (lipid-
to-protein molar ratios falling in the range 10–70), lending
support to the idea that gathering of conformationally altered
and specifically oriented proteins within membrane domains
may trigger the assembly of polypeptide chains into
oligomeric nuclei, critical for protein fibrillization.

Concluding remarks

To sum up, the considered examples highlight the following
benefits of fluorescence-based approaches in gaining
further insights into membrane-mediated protein oligomer-
ization: i) the possibility of experimentation within the
protein and lipid concentration range where most other
techniques appear powerless; ii) the use of high-quantum-
yield environmentally-sensitive tags enables revealing the
subtle peculiarities of the protein-membrane interactions,
like sigmoidality of the binding curves, being a hallmark of
protein oligomerization; iii) the opportunity for obtaining
information about structural state of the protein and
membrane under the same experimental conditions; iv)
detection of small amounts of various types of aggregates,
unamenable to chromatographic analysis; v) monitoring the
events behind the lag phase of protein fibrillization.

The most challenging future applications of fluorescence
spectroscopy in this research area include: i) development
of methodological approaches to structural characterization
of oligomeric intermediates; ii) searching for the dyes
indifferent to modifications of lipid phase, but sensitive to
protein unfolding and conversion from the disordered state
to β-strands or β-sheets; iii) fluorophore screening for their
selectivity to unfolded states, early oligomers, protofibrils
and mature fibrils; iv) correlating the lipid demixing
propensity of interfacially adsorbing protein with its
aggregation tendency, to name only a few.
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