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Abstract 

The potential of novel cyanine dyes to inhibit the insulin amyloid formation was evaluated 

using thioflavin T fluorescence assay, quantum-chemical calculations, molecular docking and 

molecular dynamics simulations. According to the ability to suppress the insulin fibrillization 

under physiological conditions the examined compounds were found to follow the order: 

trimethines > pentamethines > monomethines > heptamethines. Of these, the trimethines 3-3 and 

3-5, and pentamethines 5-3 and 5-9 almost completely prevented the protein aggregation by 

retarding both nucleation (except 3-3) and elongation processes. The quantum-chemical 

calculations revealed a complex relationship between the dye structure and its inhibitory effects. 

The molecular docking studies showed that most cyanines bind specifically to the L17 ladder of 

the B chain, located at the dry steric zipper of the insulin fibril protofilament, and form the stable 

complexes with the helices of the insulin monomer. The molecular dynamics simulations provided 

evidence for the increase of insulin helicity in the presence of cyanines. Collectively, the presented 

findings highlight two possible mechanisms by which cyanines can inhibit the insulin 

fibrillization: i) stabilization of the native protein structure followed by the retardation of the 

protein nucleation (all dyes); and ii) blocking the lateral extension of β-sheets via the dye-protein 

stacking interactions (3-3, 3-5, 5-3, 5-9). Overall, the obtained results may prove of importance 

for the design of small molecules capable of preventing amyloid fibril formation by insulin and 

other proteins. 
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1. Introduction 

The formation and accumulation of particular type of protein aggregates, amyloid fibrils, in 

human tissues and organs is associated with dozens of severe disorders including Alzheimer’s 

disease (AD), Parkinson’s disease, type II diabetes, familial amyloid polyneuropathy, etc. [1,2]. 

The process of amyloid self-assembly typically consists of two consecutive phases: nucleation, in 

which partially unfolded protein monomers form an oligomeric nucleus and the subsequent growth 

phase [3]. Recent evidence points to soluble oligomers as the primary toxic species of amyloids 

presumably due to their ability to create channels in the cell membrane, followed by disruption of 

calcium homeostasis and free radical formation [4,5]. In view of this, significant efforts have been 

made towards development of the therapeutic agents that block early stages of amyloid formation 

[6,7], reduce the lifetime of toxic oligomers by acceleration of fibrillization and prevent fibril 

fragmentation [8]. The following classes of anti-amyloid drugs have been designed for the above 

purposes: i) proteins, peptides and covalently modified peptides [9,10]; ii) modified DNA [11]; 

iii) fullerenes [12]; and iv) small organic molecules [13]. The latter include: surfactants, 

copper/zinc ion chelators [13], flavonoids (e.g., oleuropein aglycone, epigallocatechin gallat, 

curcumin, etc.) [14–16], and organic dyes such as Congo red (CR) [17], azo dyes [18], etc. Among 

the above compounds, peptide inhibitors seem to be the most promising agents for prevention of 

fibrillization process in vivo due to their high biocompatibility and affinity for the amyloidogenic 

core sequence of the fibril-forming proteins [9,19]. However, small molecules have some 

advantages over peptide amyloid inhibitors, associated with their ability to easily cross the blood 

brain barrier and avoid immunological response, higher stability in biological fluids and tissues, 

lower flexibility enabling efficient binding, etc. [20–22]. In vitro studies reported a wide number 

of small-molecule inhibitors of fibrillogenesis, differing in structure and mode of inhibitory effect. 

Specifically, it has been demonstrated that: i) an orcein-related polyphenol, O4, promoted 

conversion of Aβ1−42 oligomers into mature amyloid fibrils [9]; ii) curcumin inhibited oligomer 

formation of Aβ, lysozyme and human islet amyloidogenic polypeptide [23]; iii) epigallocatechin-

gallate prevented α-synuclein and transthyretin aggregation by stabilizing native conformation of 

the protein and favoring the formation of amorphous aggregates [23]; iv) indole derivatives 

inhibited lysozyme fibrillization through affecting both nucleation and elongation stages of 

fibrillogenesis [24], etc. However, most of the above compounds have not been tested yet in 

clinical trials, and some of them, viz. curcumin [23] and di-iodo form of clioquinol [25], did not 

show effect in the prevention and treatment of AD. Furthermore, even though the existing anti-

amyloid drugs predominantly interfere with Aβ self-assembly, the exact modes of action of these 

compounds remain elusive. In view of the lack of clinically approved drugs against amyloid 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

diseases, the design of small molecules that inhibit amyloid fibril formation is of paramount 

importance in biomedical research.  

Cyanine dyes represent a remarkable class of organic compounds, which have found 

numerous applications in theranostic of tumors [26,27] and fluorescence imaging of biomolecules 

[28,29] due to their: i) high extinction coefficients; ii) high affinity for biomolecules; iii) longwave 

absorption and emission bands (near-infrared compounds), enabling highly sensitive in vivo 

measurements due to the absence of the autofluorescence of the biological molecules in this region, 

etc. [30,31]. Furthermore, some studies showed the potential of cyanines to be employed as anti-

amyloid drugs, e.g., symmetrical cationic thiacarbocyanine N744 inhibited tau aggregation [32]. 

However, handling of cyanine-based anti-amyloid agents has been challenging due to their 

cytotoxicity and ability to self-aggregation [33], suggesting the necessity of designing novel 

inhibitors and investigating their modes of action both in vitro and in vivo. Polymethine bridge 

length, heterocyclic substituents, length of the aliphatic substituents on the nitrogen atom of 

benzazole chromophore, etc., were reported to modulate the inhibition potency of the cyanine 

inhibitors of tau aggregation [33], and therefore, the dyes, possessing these structural differences 

were selected for our study. 

This study was aimed at assessing the ability of novel cyanine dyes to prevent amyloid fibril 

formation by bovine insulin in vitro using thioflavin T assay, quantum-chemical calculations, 

molecular docking and molecular dynamics simulations. Insulin is a small helical protein hormone, 

playing a crucial role in glucose metabolism. Bovine insulin has been successfully employed to 

treat diabetes due to its high structural similarity to the human variant. Insulin amyloid deposits 

are a preclinical sign of injection-localized amyloidosis in diabetic patients, and these species were 

observed in Parkinson’s disease, as well [34,35]. Furthermore, amyloid fibrillation is a limiting 

factor in production, long-term storage and delivery of insulin pharmaceutical formulations [36]. 

In this context, the search for effective small molecular inhibitors of the pathogenic insulin 

aggregation may prove of importance for prevention of impaired absorption from the affected site 

in patients, as well as for a more cost-effective storage of insulin [36,37]. Our goals were: i) to 

estimate the kinetic parameters of insulin fibril formation in the presence of novel cyanine dyes; 

ii) to compare the influence of the polymethine bridge length and heterocyclic substituents on the 

dye ability to suppress the insulin self-assembly; iii) to establish a correlation between the 

quantum-chemical characteristics of the polymethine compounds and their inhibition potency; iv) 

to determine potential binding sites for the novel dyes in the native and fibrillar insulin; v) to 

uncover the mechanism of action of the most effective cyanine inhibitors of insulin fibrillogenesis. 

 

2. Materials and methods  
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2.1.Materials 

The grades of reagents used for this study were as follows. Bovine insulin (≥25 USP  

 

 

Scheme 1.  

Chemical structures of the cyanine dyes under study. 

 

units/mg (HPLC)), ethylenediaminetetraacetic acid (EDTA) (purity of ≥95%), NaCl (≥99%, AR 

grade), dimethyl sulfoxide (99%, ACS reagent), methanol (99.8%, ACS reagent), N-(2-

hydroxyethyl)piperazine-N0-2-ethanesulfonic acid (Hepes) (≥99.5% (titration)), and thioflavin T 

(ThT) (≥65%) were from Sigma. Monomethine [31], trimethine [38], pentamethine [30] and 

heptamethine [39] cyanine dyes (analytical grade) (Scheme 1) were synthesized and purified by  

recrystallization from methanol in the University of Sofia, Bulgaria, as described previously. 

Phosphotungstic acid hydrate (high-purity grade) for electron microscopy was from REACHIM. 

The water used for this study was purified by ion exchange or distillation. All other reagents were 
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used without further purification. Cyanine dye stock solutions (100 μM) were prepared in dimethyl 

sulfoxide or methanol, while ThT powder was diluted in HEPES buffer (20 mM HEPES, 0.1 mM 

EDTA, 150 mM NaCl, pH 7.4) to the concentration of 150 μM. The dye concentrations were 

determined spectrophotometrically using Cary 100 UV-Vis spectrophotometer (Varian 

Instruments, Walnut Creek, CA). The extinction coefficients ( ) at absorption maxima ( abs ) for 

pentamethine (AK5-1, AK5-2, AK5-3, AK5-4, AK5-6, AK5-8, AK5-9), heptamethine (AK7-6) 

cyanine dyes in dimethyl sulfoxide, and monomethine (AK12-17, AK12-18, AK12-19, AK12-20), 

trimethine cyanine dyes (AK3-1, AK3-3, AK3-5, AK3-7, AK3-8, AK3-11) in methanol are 

presented in Table 1, while the extinction coefficient of ThT was taken as 412 23800   M-1cm-1. 

 

2.2.The kinetics of amyloid formation monitored by thioflavin T assay 

The insulin stock solution (10 mg/ml) was prepared in 10 mM glycine buffer (pH 1.6, 150 

mM NaCl). The kinetics of insulin fibrillization was monitored by ThT assay. Specifically, 96-

well plates (black plastic with clear glass bottom, Greiner Bio-One, Frickenhausen, Germany) 

filled with ThT (10 µM), protein (20 µM) and cyanine dye (0 – control sample or 10 µM) were 

loaded into the fluorescence microplate reader (SPECTRAFluor Plus, Tecan, Austria), heated to 

37 °C and incubated under constant linear shaking (50 rpm) for up to several hours [40]. The TEM 

images of insulin fibrils formed in the absence of cyanine dyes are given in Figure S1, revealing 

the formation of the rod-like aggregates ca. ~200–500 nm in length and ca. ~20 nm in thickness 

similar to those observed by Iannuzzi et al. [41]. The ThT fluorescence was recorded over time at 

485 nm (10 nm bandpass filter) with excitation at 430 nm (35 nm bandpass filter). Three replicates, 

corresponding to three wells for each sample, were used to minimize the well-to-well variation. 

The obtained kinetic curves (Figures 2–3) represent the mean of three replicates (standard error is 

about 5 %). 

The quantitative characteristics of the fibrillization process were determined through 

approximating the time ( t ) dependence of ThT fluorescence intensity at 485 nm ( F ) with the 

sigmoidal curve, using Origin Lab 7.5 software (Origin Lab Corporation, Northampton, MA, 

USA) [42]: 

max 0
0

1 exp[ ( )]m

F F
F F

k t t


 

 
,          (1) 

where 0F  and maxF  are ThT fluorescence intensities in the free form and in the presence of protein 

after the saturation has been reached, respectively; k  is the apparent rate constant for the fibril 

growth; mt  is the time needed to reach 50% of maximal fluorescence. The lag time was calculated 

as: 2 /mt k .  
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 To enhance fibril formation in the control sample, we performed a separate series of 

experiments, in which TRIS buffer (10 mM TRIS-HCl, 150 mM NaCl, pH 7.4) solutions, 

containing ThT (10 µM), insulin (20 µM) and cyanine dye (0 or 10 µM), were incubated in 

thermostat at 37 ºC under constant orbital shaking with the increased speed (115 rpm) for 115 

hours. Indeed, the revealed ThT fluorescence response was about an order of magnitude greater as 

compared to that observed in the first series of experiments (Figure S2). Structures of the protein 

aggregates grown in the presence of the most effective insulin amyloid inhibitors, viz. AK3-3, 

AK3-5, AK5-3 and AK5-9, were compared with that of the control sample, using transmission 

electron microscopy (Figure S3). 

 

2.3.Transmission electron microscopy (TEM) 

For electron microscopy assay, a 5 μl drop of the protein solution (20 μM, taken from the tested 

sample after the fibril growth has been finished) was applied to a carbon-coated grid and blotted 

after 3 min. A 10 μl drop of 1.5% (w/v) phosphotungstic acid solution was placed on the grid, 

blotted after 30 s, and then washed 2 times by deionized water and air dried. The resulting grids 

were viewed by EM-125 electron microscope (Selmi, Ukraine) (Figure S3). 

 

2.4.Quantum-chemical calculations 

The 3-21G(d,p) basis set was employed for the ground state 
0S  geometry optimization of 

cyanine dyes, which is the appropriate for the organic compounds [43]. The obtained geometries 

of the dyes were used as starting conformations for calculation of the ground state dipole moment 

( g ), the energy of the ground state ( gE ) and dihedral angles between the donor (quinoline 

moieties) and acceptor (benzazole moieties) of the dye ( ) with the 6-31G(d,p) basis set, offering 

reasonable estimates of the ground state properties [44,45]. All the above calculations were done 

by WinGamess (version 30 September 2017 R2). The optimized dye conformations were further 

used for estimation of the following descriptors by the semiempirical PM6 method (MOPAC 2016 

Version18.012L – free academic license [46]): i) the energy of the highest occupied ( EHOMO ) 

and lowest unoccupied ( ELUMO ) molecular orbitals; ii) the solvent-accessible area (CA ); iii) the 

cosmo volume (molecular volume) ( CV ); iv) the molecular length ( L ), height ( H ) and width (

W ); v) the polarizability of the molecule at the electric field strength 0 eV ( P ). The Molinspiration 

software (http://www.molinspiration.com/cgi-bin/properties) was used for the calculation of 

lipophilicity of the examined compounds ( LogP ) (http://www.vcclab.org/lab/alogps/), 

topological polar surface area ( TPSA ), and molecular weight ( . .Mol wt ) [47]. The ALOGPS 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

method (http://www.vcclab.org/lab/alogps/) was employed to estimate the aqueous solubility (

LogS ) [48]. All the calculated parameters are presented in Table S1. 

 

2.5.Molecular docking studies 

The molecular docking studies were carried out to identify the possible binding sites for the 

cyanine inhibitors of insulin fibrillization (revealed by ThT assay), and to elucidate the nature of 

the interactions involved in the dye–protein complexation in the native protein monomer (taken 

from the bovine insulin hexameric form, PDB ID: 2ZP6) and amyloid fibrils (the two-

protofilament model, containing 8 strands in each protofilament, based on the crystal structure of 

the segment LVEALYL (human insulin B chain residues 11–17), and downloaded from 

http://people.mbi.ucla.edu/sawaya/jmol/fibrilmodels/) [35]. It should be noted that the human 

insulin fibrils were used because of the lack of the crystallographic model for the bovine insulin 

fibrils. Furthermore, despite being stored in pancreas in the form of hexamers, at neutral pH and 

micromolar concentrations insulin dissociates into dimers and tetramers, and at the first step of the 

aggregation it dissociates into physiologically active monomers (possessing more exposed 

hydrophobic areas that dimers), which were therefore used in the molecular docking procedure 

[40,49,50]. Finally, the structures of cyanine dye monomers, optimized in Avogadro, were 

employed for the docking studies, because the monomers were predominant in buffer solution at 

micromolar concentrations [31,38,51], and they also showed the highest affinity for amyloid fibrils 

[52] and DNA, compared to dimers and higher order aggregates [43]. The top 10 energetically 

favorable dye-protein structures were obtained using the PatchDock algorithm that is suitable for 

the protein-ligand and protein-protein complexes, and then refined by the FireDock, as described 

previously [52]. The docked complexes were viewed by the Visual Molecular Dynamics (VMD) 

software (version 1.9.3). 

 

2.6.Molecular dynamics simulation of the dye-protein complexes 

The 20 ns MD simulations were performed using GROMACS software (version 5.1) and the 

CHARMM36 force field, which is update of CHARMM27, reported to provide the best 

reproduction of the insulin experimental behavior [53]. The input files for MD calculations were 

prepared for the energetically most favourable dye-protein complexes using the web-based 

graphical interface CHARMM-GUI. The .mol2-files of AK12-17, AK3-1, AK3-3, AK5-3 and 

AK7-6 were created in OpenBabelGUI 2.4.1, using the structures drawn in MarvinSketch (.mrv 

format). The topologies of the ligands were generated using the dye .mol2-files and CHARMM 

General Force Field, and subsequently modified by replacing partial charges with those assigned 

by RESP ESP charge Derive Server (designed to derive non-polarizable charges for new 
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molecules) [54]. The temperature was set at 400 K to accelerate protein unfolding, that enabled us 

to test the stability of the free insulin monomer (2ZP6) and the most energetically favourable dye-

protein complexes obtained in docking studies. The systems were solvated in a rectangular box 

with a minimum distance of 10 Е from the protein to the edge of the box. The counter ions were 

added to neutralize and equilibrate the system. The MD simulations of the dye-protein complexes 

were carried out in the NPT ensemble. The systems were fully hydrated and contained 1 protein 

molecule (51 residues) and about 4384–4931 water molecules (the total number of atoms varied 

from 14009 to 15645). The molecular dynamic trajectories were saved every 1000 steps (1 ps 

interval) for subsequent analysis. The minimization and equilibration of the system were 

performed during 5000 (10 ps) and 500000 (1 ns) steps, respectively. The constant temperature 

conditions were provided by the V-rescale thermostat and there were no restraints in the 

simulations. The commands gmx rms, gmx rmsf, gmx gyrate and gmx sasa, included in 

GROMACS, were used to calculate the root-mean-square deviation ( RMSD ), root mean square 

fluctuations ( RMSF ), radius of gyration ( gR ), and solvent accessible surface area ( SASA) per 

residue. The analyses of the protein secondary structure and distances between the dye and protein 

centres of mass were performed in VMD (version 1.9.3), using the Tcl scripts. 

 

3. Results and discussion 

As seen in Figures 2A,B, 3A, insulin samples treated with cyanine dyes at low dye-protein 

ratio 0.5, showed 2–28 times lower ThT fluorescence intensity (coupled with much smaller 

turbidity) than a control sample (not containing the cyanine dye), that displayed the largest ThT 

fluorescence response and the highest turbidity [55,56]. Accordingly, the kinetic parameters of the 

protein fibrillization significantly differ from those of the control sample, reflecting the inhibition 

of the protein aggregation (Table 1).  

The effects of cyanine dyes on the insulin fibrillization appeared to depend on the polymethine 

bridge length of the compounds, and most dyes showed the ability to interfere with the protein 

aggregation, decreasing as follows: trimethines > pentamethines > monomethines > heptamethines 

(Table 1, max 0/F F ). It is worth noting at this point that the most effective cyanine inhibitors of tau 

aggregation also had bridge length of three carbons [35]. Furthermore, AK3-3, possessing the 

highest inhibitory potential induced the decrease in k  value of insulin fibrillization, the effect 

being similar to that of cationic carbocyanine dye N744, which reduced 

 

Table 1. 

Spectral parameters of cyanine dyes and kinetic parameters of insulin fibrillization in the presence 

of cyanines. 
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Dye 
 a, 

M-1cm-

1 

abs b, 

nm 

0F c, 

a.u. 
maxF d, a.u. k e, h-1 mt

f, h 
Lag time

g, h 
max 0/F F

h 

Control - - 986±55i 35183±500 2.7±0.1 2.15±0.02 1.4±0.1 35.7±1.4 

AK12-

17 
83200 507 715±63 8694±50 3.3±0.1 1.75±0.01 1.1±0.0 12.2±1.6 

AK12-

18 
77200 507 836±28 7532±21 4.8±0.1 1.64±0.01 1.2±0.0 9.0±0.7 

AK12-

19 
70700 517 756±54 6683±42 3.5±0.1 1.70±0.01 1.1±0.0 8.8±0.7 

AK12-

20 
59300 517 700±48 6030±76 1.6±0.1 2.11±0.04 0.9±0.0 8.6±0.7 

AK3-1 136000 628 949±8 3235±15 5.9±0.2 1.89±0.01 1.6±0.0 3.4±0.0 

AK3-3 159400 630 927±5 1232±6 0.6±0.0 4.77±0.07 1.4±0.1 1.3±0.0 

AK3-5 150000 631 911±1 1410±9 1.6±0.0 7.97±0.03 6.7±0.1 1.5±0.0 

AK3-7 161200 632 942±4 1477±10 7.8±0.6 2.77±0.01 2.5±0.0 1.6±0.0 

AK3-8 145800 652 954±5 4793±17 6.3±0.1 3.89±0.00 3.6±0.1 5.0±0.0 

AK3-

11 
153200 649 954±4 3367±23 7.9±0.2 4.60±0.01 4.3±0.0 3.5±0.0 

AK5-1 191158 652 902±27 4793±47 5.1±0.3 2.00±0.01 1.6±0.0 5.3±0.2 

AK5-2 200442 663 899±21 7634±55 8.7±0.3 2.34±0.01 2.1±0.0 8.5±0.3 

AK5-3 222041 652 943±3 2441±22 1.3±0.0 12.06±0.03 10.5±0.1 2.6±0.0 

AK5-4 212768 665 939±10 3523±35 3.1±0.1 4.60±0.02 4.0±0.1 3.8±0.1 

AK5-6 181648 660 975±17 9812±54 5.2±0.1 3.52±0.00 3.1±0.1 10.1±0.2 

AK5-8 225549 660 858±56 7590±79 5.1±0.2 1.20±0.01 0.8±0.0 8.8±0.7 

AK5-9 205688 657 940±6 2319±11 2.4±0.1 7.36±0.02 6.5±0.1 2.5±0.0 

AK7-6 208902 817 905±35 16839±100 8.6±0.3 4.17±0.00 3.9±0.0 18.6±0.8 
a – the extinction coefficients at absorption maxima (b) for cyanine dyes in dimethyl sulfoxide or methanol. 

c – ThT fluorescence intensity (at 485 nm) in the free form. 

d – ThT fluorescence intensity (at 485 nm) in the presence of protein after the saturation has been reached. 
e – the apparent rate constant for the fibril growth. 

f – the time needed to reach 50% of maximal fluorescence. 

g – the lag time of the fibril formation. 
h – ThT fluorescence response to the presence of insulin aggregates.       

h – Error bars represent standard errors of the parameters obtained by approximating the time dependence of ThT 

fluorescence intensity at 485 nm with the sigmoidal curve (1), using Origin Lab 8.0 software (Nonlinear curve fit and 

the No weighting options). 

 

the filament length of tau aggregates without altering the lag time [34]. The above finding suggests 

that it is insulin elongation (not nucleation) that is affected by the presence of AK3-3. For the 

monomethine dyes and pentamethine AK5-8, a slight drop in lag time was accompanied by a slight 

increase in the apparent rate constant for the fibril growth, although a 2-fold decrease of k  was 

observed for AK1-20. The coincubation of trimethine/pentamethine/heptamethine compounds 

with the insulin samples resulted in a rise of both lag time, up to 7.5 times  
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A B  

  

C D 

Figure 2.  

Kinetics of insulin fibrillization in the presence of monomethine (A) and pentamethine (B) cyanine 

dyes (experimental points and fitted curves). The inset (B) shows the kinetic curves for AK5-3 and 

AK5-9 in the range of 1000 – 3000 a.u. Each experimental point is the average of 3 identical 

samples. max 0/F F  value of insulin fibrillization in the presence of monomethine (C) and 

pentamethine, heptamethine (D) cyanine dyes. Protein, dye and ThT concentrations were 20, 10 

and 10 μM, respectively.  

(suppressed nucleation) and k , up to 3.2 times (enhanced elongation) compared to the control 

values, with the exception of AK3-5, AK5-3, AK5-9, which retarded the elongation and slowed 

down the nucleation of insulin fibrils. Notably, the experimental conditions affecting the 

nucleation and elongation do not always induce the changes of kinetic parameters in the same 

direction [56,57]. Taking into account the facts that the insulin secondary structure changes from 

almost completely helical to predominant β-sheets [58], and that the hydrophobic core of insulin 

(B-chain, the residues 11–17 [40]) is exposed to solvent during partial unfolding of the protein 

(enhanced by NaCl), followed by the formation of oligomers and protofibrils [45,57], it can be 
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supposed that the cyanine dyes are capable of stabilizing the native structure of insulin by, for 

example, preventing the destruction of α-helixes. To verify this hypothesis, we performed a 

separate series of experiments (to increase the amount of mature insulin fibrils formed in control) 

and viewed the obtained protein aggregates at TEM (Figure S3). Surprisingly, superfibrillar 

twisted structures (ca. ~ 536±36 nm in width and up to several tens of micrometers in length) 

appeared in the absence of the cyanines (Figure S3, A) [59]. In turn, fuzzy amyloid-like fibrils 

(ca. ~ 27±5 nm in width, and ca. ~ 1.2±0.1 μm in length) embedded in amorphous protein were 

observed in the presence of AK3-3 (Figure S3, B). Furthermore, spheroidal insulin assemblies 

possessing the diameters of ca. 30 – 650 nm were stabilized in the presence of AK3-5, AK5-3, 

AK5-9 (Figure S3, C–E). The latter effect was similar to that observed for insulin aggregation 

inhibited by eugenol, revealing that the cyanines can retain native protein species growing into 

mature fibrils by stabilizing large oligomers [60]. Indeed, AK3-5, AK5-3, AK5-9 appeared to be 

the most effective in preventing the insulin amyloid nucleation (i.e., extending the Lag time , 

Table 1), showing the off-pathway nature the observed spheroidal assemblies (Figure S3,C–E). 

In turn, AK3-3 inhibited only the elongation of the fibrils that resulted in the formation of the 

amyloid-containing amorphous species, being, presumably, less toxic than the large oligomers 

[61]. Interestingly, the observed insulin spherical aggregates may also represent a core of the giant 

insulin spherulites, containing few amounts of amyloid material, because they induced much lower 

ThT response as compared to that in the control sample (Figure S2) [62]. Furthermore, the native 

insulin secondary structure should be partially stabilized by the most effective cyanine inhibitors 

due to the fact that the smallest number of spheroidal aggregates, as well as the weakest ThT 

fluorescence response, were observed in the presence of AK3-5, as compared to that in the 

presence of AK5-3 and AK5-9 (Figure S3). 
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Figure 3.  

Kinetics of insulin fibrillization in the presence of trimethine cyanine dyes (experimental points and 

fitted curves). The inset shows the magnified curves in the range of 1000 – 5000 a.u. Each 

experimental point is the average of 3 identical samples. (A). Kinetic parameters of insulin 

fibrillization (B–D). Protein, dye and ThT concentrations were 20, 10 and 10 μM, respectively.  

 

The ThT fluorescence studies allowed us to uncover the effects of heterocyclic substituents 

on the dye ability to suppress the protein self-assembly, viz.: i) the increase in length of the 

aliphatic substituents on the nitrogen atom of benzazole chromophore from 1 to 2 and more 

carbons enhances the inhibition potency (decreased max 0/F F ) of trimethines (AK3-3, AK3-5, 

AK3-7 compared to AK3-1) and pentamethines (AK5-3, AK5-4, AK5-9 compared to AK5-1, 

AK5-2). Interestingly, pentamethine dyes, possessing long alkyl chains in the quaternized nitrogen 

were reported to have far more higher affinity for bovine serum albumin than those with short 

substituents on the nitrogen atom of benzazole chromophore, suggesting that the novel dyes could 

inhibit amyloid fibril formation by interaction with native proteins [56]; ii) the presence of benzyl 

substituent in the N-alkyl substituents of benzazole moiety reduces the ability of AK3-11, AK5-6, 

AK7-6 to inhibit the insulin amyloid formation; iii) the replacement of S by Se in the benzazole 

heterocycle had negative impact on the inhibitory potential of AK5-2 and AK5-4 compared to 

AK5-1 and AK5-3, respectively; iv) the presence of C N  group in the N-alkyl of AK5-8 and the 

alkyl substituents in the 5-th and 6-th positions of benzazole moiety of AK3-8 decreases the dye 

inhibition potency; v) the long alkyl substituents of the quinoline ring, containing N-

methylpyrrolidine and N-methylpiperidine groups significantly reduce the ability of the 

monomethines to interfere with the insulin aggregation; vi) the OH-groups of the aliphatic 

substituents on the nitrogen atom of the benzazole chromophore (AK3-7 and AK5-9) induce 2–4 
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times higher decrease in 
max 0/F F , than other trimethines (except AK3-3, AK3-5) and 

pentamethines (except AK5-3). The latter observation is in agreement with the results of Lee, 

Kisilevsky and Mishra, who reported that molecules containing hydroxyl, sulfonate or carbonyl 

groups inhibit amyloid fibril formation due to their strong interactions with amino acids [22,63,64]. 

Notably, monomethine dyes possessing sulfonate groups did not show high inhibitory potential 

presumably due to the bulky substituents in the quinoline moieties, which may reduce the dye 

affinity for the native insulin. 

Our results showed that the monomethine compounds and heptamethine AK7-6 induced the 

least significant drop in ThT fluorescence intensity, despite the kinetic parameters provoking the 

increase of max 0/F F . These discrepancies may reflect the morphological changes in amyloid fibril 

structure (but not the decreased extent of the protein aggregation) induced by the dyes and resulting 

in the weaker ThT signal [65]. Furthermore, the monomethines represent the only class tested 

whose absorption spectra overlap with the emission band of ThT, suggesting that the Förster 

resonance energy transfer could also be responsible for the drop in ThT fluorescence (Table 1). In 

turn, AK7-6 was reported to form H-aggregates in aqueous solutions that may result in its lowest 

ability to interfere with the insulin amyloid formation [57]. In all cases, however, much lower 

turbidity of insulin solutions incubated with cyanine dyes, compared to the control sample, can be 

regarded as additional evidence for inhibition of amyloid fibril formation by this class of small 

molecules [66]. 

Notably, the examined cyanine dyes can also compete with ThT for the fibril binding sites, 

reducing the number of ThT molecules, associated with the protein assemblies [67]. Indeed, 

trimethine dyes 7519 and SH-516 were successfully employed for insulin and α-synuclein amyloid 

detection, respectively [68,69]. Similarly, monomethine dye T-284 showed high sensitivity to 

amyloid α-synuclein, despite the great impact of the substituents in the benzazole and quinoline 

moieties on the fluorescence response of the above dyes [70]. On the other hand, ThT has stronger 

affinity for insulin fibrils, as compared to other compounds (e.g., Congo Red, Nile Red) [65,70,71], 

and ThT assay is thought to be the most sensitive approach for monitoring the formation of insulin 

fibrils under acidic conditions [72], that reduces the probability of ThT competitive displacement 

from the fibril binding sites. Furthermore, while the inhibition occurs at the early stages of the 

insulin aggregation, the ability of the investigated dyes to displace ThT from the amyloid fibril 

binding sites could lead to the overestimation of their inhibitory potential, but not to a false positive 

effect. Finally, a separate series of TEM experiments showed that cyanine dyes possessing the 

highest inhibitory potential do inhibit insulin amyloid formation (Figure S3). 

To gain deeper insights into the factors that may underlie the observed effects, the above 

experiments were complemented by the quantum-chemical calculations, molecular docking and 
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molecular dynamics simulations, with particular emphasis on the mechanisms contributing to the 

inhibition of the insulin amyloid formation by the cyanine dyes. 

The quantum-chemical calculations enabled us to establish a correlation between the 

experimentally determined 
max 0/F F  values and the quantum-chemical descriptors (Table S1). 

Remarkably, most of the examined dyes possess a planar (dihedral angle   between the benzazole 

and quinoline moieties varies from 163 to 180 degrees) hydrophobic core that is the common 

feature shared between the reported amyloid inhibitors [73,74]. In turn, the nonplanar 

monomethines showed the lowest inhibition potency (Table 1). Next, TPSA , LogP , and . .Mol wt  

values for AK3-3, AK3-5, AK5-3 were similar to those obtained for the cyanine inhibitors of tau 

aggregation, e.g., compound 11, capable of penetrating the blood-brain barrier, and thus, being the 

most attractive for biological experimentations, viz. pharmacokinetics studies [33,75,76]. The high 

polarizability ( P ) of the planar cyanine dyes was supposed to account for the strong van der Waals 

interactions with a cross-β-sheet structure, followed by the stabilization of soluble tau oligomeric 

species [33,77]. Furthermore, α-helices provide the surfaces suitable for the binding of π-

delocalized ligands, as well [77]. Next, the quantitative structure-activity analysis of the 

polyphenolic inhibitors of Aβ aggregation showed negative correlation between the fibrillization 

extent and the molecular descriptors such as P , . .Mol wt , CV  and CA , indicating that the highest 

size factor leads to the greatest inhibitory effect [78]. In turn, the P  values derived for the dyes 

under investigation were lower than those reported previously, and a negative correlation between 

P , L , . .Mol wt  and the inhibitor potency 0 max/F F  was observed (the correlation coefficients were 

estimated to be RY = -0.6, -0.75 and -0.73, respectively), suggesting that either different 

mechanisms are involved in the prevention of insulin aggregation [77], or that the high ability of 

the dyes to self-associate in buffer solution and/or in the presence of native proteins prevents them 

from exerting specific inhibitory effects [79]. Indeed, the increase in cyanine dye aggregation with 

a polymethine bridge length (that is proportional to L  for all the compounds except 

heptamethines) was reported previously [80], while the binding of pentamethines and 

heptamethines to monomeric proteins turned out to shift the equilibria between various dye species 

towards the aggregate formation [30,56], in contrast to the trimethines [43], producing the largest 

decrease in max 0/F F  (Table 1). Overall, these data indicate that despite the lowest self-aggregation 

propensity the trimethines AK3-3, AK3-5 may have the strongest stacking interactions with the 

grooves on the amyloid protofibril surface, and thus, the highest ability to prevent lateral growth 

of the insulin fibrils [81], manifesting itself in the decrease of k  values compared to control (Table 

1). Notably, the advantage of the tested dyes over polyphenoles, e.g., curcumin and quercetin, is 

that their tendency to aggregate is unlikely to play a key role in the prevention of the amyloid fibril 
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formation, and thus, cyanines are less prone to exert non-specific inhibitory effects, which 

complicate the target validation [35,82]. Next, a moderate negative correlation ( RY  = -0.65) 

between 
0 max/F F  and HOMO-LUMO gaps indicates that the inhibition potency of cyanines 

increases along with their chemical reactivity, as well [83]. Likewise, only a weak correlation was 

revealed between 
0 max/F F  and the other descriptors (Table S1). Notably, the ground-state dipole 

moments of the monomethine dyes seem to be overestimated in 3-21G(d,p) basis set as judged 

from the typical values of this parameter reported for cyanine compounds [84,85], although 

leaving the monomethines out of consideration did not improve the correlation. Finally, the H  

values allowed us to suggest that the monomethines, AK5-6 and AK7-6 are unlikely to interact 

with channels running parallel to the long fibril axis, because the distance between the every 

second residue in a β-sheet is 6.5–6.95 Å [86]. Interestingly, Se has an important biological role: 

it is typically present in the active centers of human redox enzymes in the form of the 

selenocysteine that is more potent nucleophile than cysteine [87], while organoselenium molecules 

are of growing interest due to their important antioxidant properties [88–90]. According to our 

quantum-chemical calculations, replacement of S (AK5-1, AK5-2) to Se (AK5-2, AK5-4) induced 

a slight increase in the dye molecular volume and solvent-accessible area, and ~15 – 20 % decrease 

in lipophilicity (Table S1). In turn, dye molecules retained their almost planar structures (Table 

S1, torsion angle 0 ). These results show that hydrophobic dye-protein interactions are of great 

importance for the pentamethine inhibitors, leading to the ~2-fold increase in the AK5-1, AK5-3 

inhibition potency 0 max/F F  as compared to that of AK5-2, AK5-4, respectively (Table 1). 

Furthermore, the self-aggregation potency of Se-containing dyes should be lower, as compared to 

that of S-containing compounds, because Se is more potent nucleophile under physiological 

conditions [87]. However, AK5-1, AK5-3 monomers seem to form more stable complexes with 

the hydrophobic cavities of insulin and the dry steric zipper of insulin prefibrillar aggregates, than 

AK5-2, AK5-4. 

The molecular docking studies indicated that the cyanine compounds (except AK7-6) and ThT 

tend to form the most stable complexes with L17 ladder (4–6 strands) of the B chain, located on 

the dry steric zipper of the insulin fibril protofilament, with their long axes parallel to the fibril 

axis, although the angle between the AK12-17 plane and the fibril extension direction was about 

20 degrees (Figure 4) [20]. Furthermore, the above binding site also includes the residues C19 

and L6 of the first and second protofilaments (B chain), respectively. Indeed, according to the 

molecular dynamics simulations, the ladders formed from Y and L possess high-affinity for ThT 

[91]. This binding mode was prevalent for pentamethines (AK5-3), trimethines (AK3-1, AK3-3) 

and ThT, but not for heptamethines (AK7-6) and monomethines (AK12-17), which exerted far 
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less pronounced inhibitory effect on the insulin fibrillization than the other dyes (Figure S3). 

Interestingly, despite the high thickness of some dyes (Table S1), all compounds are capable of 

associating with fibrillar insulin parallel to the long fibril axis, since the binding site resides at the 

C-termini of LVEALYL β-strands (not in the grooves formed by the side chains of amino acids) 

(Figure 4). In the most energetically favorable dye-protein complex AK7-6 was attached to the 

fibril along the β-strand direction, interacting with the residues L17, Q4 and L6 of the first and 

second protofilament (B chain), respectively (Figure 4). However, the nonspecific primary 

binding sites for AK7-6, AK12-17 (Figure S3) and other monomethines (data not shown) were 

observed, embracing the C- and N-termini of β-strands (coil structure) located at the fibril polar 

face. Most trimethines and pentamethines also associated with coil structure of the insulin fibril 

(secondary binding modes, data not shown). The analysis of the fibril binding sites revealed that 

the possibility of competitive binding of trimethine, pentamethine cyanine dyes and ThT, in 

principle, cannot be excluded. However, the inhibition of amyloid growth by, for instance, 

resveratrol, naproxen and ibuprofen was attributed to their binding to the surface grooves on the 

edge of IAPP and Aβ fibrils, followed by blocking the lateral extension of the fibril [91,92]. In our 

case, the structure of the dry steric zipper interface could be destabilized by the bound dyes, 

resulting in the prevention of insulin cross-β spine formation (Figure 4) [40,93,94]. The docking 

results coincide with the experimental data, showing that the most effective inhibitors, viz. AK3-

3, AK3-5, AK5-3 and AK5-9 suppressed the fibril elongation, i.e. modulated the aggregation of 

the preformed nuclei. In turn, as in the case of resveratrol, no arguments were obtained in favor of 

the dye binding to the edge of the ending β-strand, which may inhibit the longitudual fibril growth 

[9,94]. Furthermore, Figure S4 shows that the monomethine compounds, AK7-6 and ThT do not 

compete for the same protein binding sites, making it unlikely that ThT is displaced from the fibril 

side-chain channel, rather its fluorescence intensity is reduced due to the inhibition of insulin 

aggregation. Similarly, the Förster resonance energy transfer between ThT and monomethines is 

hardly possible due to the lack of specific binding of the dyes to amyloid fibrils. 

As seen in Figure 4, the most energetically favorable dye-protein complexes are formed as a result 

of the cyanine binding to different sites of the native insulin: i) AK5-3 and AK7-6 are attached to 

the B-chain α-helix (residues 10–17) and to the B-chain residues 1-4 (β-sheet includes the residues 

B3,B4); ii) AK3-1, AK12-17 and ThT associate with the B-chain residues 17–22 (3-10-helix 

includes the residues B20–B22), as well as to the B-chain residues 1-4 (AK3-1), F1 (ThT), and the 

A-chain α-helix (residues 13–17) (AK12-17); iii) AK3-3 is associated with the B-chain residues 

10–13 and F1. Thus, the typical binding modes for cyanines are (Figure S3): i) the association 

with the B-chain residues 1-4, the B-chain α-helix and/or 3-10-helix, that is preferable for all dyes 

and may hamper the nucleus formation by preventing the interactions between the B-chains of the 
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two partially unfolded insulin monomers [40,95]; ii) the binding between the B-chain C-terminal 

fragment (coil) and the A-chain α-helix (residues 2–8) that is observed for ThT and AK7-6; iii) 

the binding between the B-chain 3-10 helix (residues 20–22) and the A-chain α-helix (residues 

13–17) that is found for AK12-17 and AK3-1; iv) the association with the B-chain C-terminal 

fragment (coil); and v) the association with the A-chain α-helix (residues 2–8) that is revealed for 

AK3-3. On the whole, the cyanines seem to have high affinity for α-, 3-10-helices of the B- chain 

and the A-chain α-helix (residues 13–17), although, e.g., AK12-17 and AK7-6 are characterized 

by multiple binding sites, contrary to the other probes (Figure S3) [95,96]. The latter may reflect 

the low binding affinity of monomethine and heptamethine dyes for the native insulin because of 

the lack of specific binding sites, which also could result in their significantly lower (presumably 

nonspecific) inhibitory effect on the insulin aggregation (Table 1) [79]. The rest of the 

monomethines also lacked the specific binding sites, while the pentamethines were bound to the 

B-chain α- and 3-10 helices, and the trimethines formed stable complexes with both B-chain and 

A-chain helices (data not shown). 

The molecular docking results support the above assumption that the novel dyes are capable 

of stabilizing the native insulin structure by interacting with the B-chain α-helix (comprising the 

residues 11–17 of the amyloid core [40]). Likewise, Congo Red and other organic molecules were 

reported to inhibit the insulin fibrillization [18,97]. In turn, slowing down the insulin 

transformation from α-helical- to β-sheet-rich structure was also induced by 1,2-Bis[4-(3-

sulfonatopropoxyl)phenyl]-1,2-diphenylethene, possessing higher affinity for the partially  
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Figure 4.  

Schematic representation of the energetically most favourable dye complexes with fibrillar (A–

E) and native (F–J) insulin, obtained using PatchDock/FireDock servers: AK12-17 (A,G), AK3-

1 (B,H), AK3-3 (C,I), AK5-3 (D,J), AK7-6 (E,K), ThT (F,L). AK7-6 is bound to residues L17 

and Q4, L6 of the first and second protofilaments (B chain) of fibrillar insulin, respectively, 

perpendicular to the main fibril axis, while the other dyes associate with L17 ladder of the B 

chain, located on the dry steric zipper of insulin fibril, parallel to the fibril axis. AK5-3, AK7-6 

are attached to the B-chain α-helix (residues 10–17) and to B-chain residues 1-4 (β-sheet – 

residues B3–B4) of native insulin. AK3-1, AK12-17, ThT – to the B-chain residues 17–22 (3-

10-helix – residues B20–B22), as well as to B-chain residues 1-4 (AK3-1), F1 (ThT), and A-

chain α-helix (residues 13–17) (AK12-17). AK3-3 is associated with the B-chain residues 10–

13 and B-chain residue F1.  

 

unfolded protein conformation compared to the native one [95]. The fact that the hydrophobic 

(e.g., leucine, valine, alanine) and aromatic (e.g., the B-chain F1 and the A-chain Y14) residues, 

constitute the insulin binding site for the cyanine dyes, points to the key role of hydrophobic and 

aromatic intermolecular interactions in the stabilization of the dye-protein complexes. Indeed, 

fibril formation by the human insulin with mutations to more polar residues retarded the amyloid 

nucleation, reflecting the high impact of hydrophobic interactions on the protein aggregation [98]. 

At the same time, the polyphenolic inhibitors (luteolin, transilitin, maritimetin) of Aβ aggregation 

showed the π-π stacking interactions with the peptide [78]. Interestingly, the bovine insulin is 

significantly more prone to fibrillization than the human and porcine insulins due to the A8 residue 

(A-chain) on the protein surface, enhancing the hydrophobic intermolecular interactions [54]. 

From this point of view, the ability of the examined dyes to associate with A8 residue (resulting 

from the fact that these compounds (except monomethines) are characterized by high LogP  

values (Table S1) similar to the cyanine tau aggregation inhibitor compound 11 [35]) could lead 

to the increased lag time of insulin fibrillization (Table 1). However, despite the inhibition potency 
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of many anti-amyloid therapeutic agents is connected with their tendency to self-associate due to 

strong stacking interactions with aromatic amino acids, the dye ability to prevent insulin from 

aggregation showed inverse correlation with L , suggesting that either the primary inhibition 

mechanism is the stabilization of the α-helical structure (which manifests itself in the retardation 

of the protein nucleation and is supported by the docking studies), or that the dye-protein stacking 

interactions (blocking the lateral extension of β-sheets) are weaker than those within the dye 

assemblies, leading to less pronounced effect on 
maxF  and k  with the increase of L  [99,100]. 

Finally, trimethines occupy both A- and B-chain α-helices, which may be responsible for their ~2–

4 times higher inhibitory potential than that of the pentamethines (Table 1, 
max 0/F F ). Indeed, 

when the B-chain C-terminus was tethered with the A-chain N-terminus, the formation of nontoxic 

amorphous aggregates of the human insulin was observed [101]. It is noteworthy that electrostatic 

interactions can also play essential role in the formation of critical nucleus, as was demonstrated, 

in particular, for the human insulin mutants with altered charge, for which the increase in the lag 

time of amyloid formation was detected [96]. Therefore, the cationic cyanine dyes may inhibit 

insulin nucleation by interaction with negatively charged amino acids, as well. 

Finally, to verify the idea that the inhibitory effect of cyanines on the insulin fibrillization may 

arise from the stabilization of the native protein structure, we performed a series of molecular 

dynamics simulations for the five energetically most stable dye-protein complexes. The backbone 

RMSD and radius of gyration steadily increased as a function of time indicating that the protein 

structure is significantly denatured during about 10 ns (Figures S5–S10,A). The helicity of free 

insulin averaged over all trajectory was ~ 32%. Similarly, three α-helices of the human insulin 

(whose positions are similar to those of bovine insulin) retain about 50% of their structure at 60 

ºC, as revealed by CD measurements [102]. It appeared that the dyes under study are capable of 

stabilizing the insulin native structure (Figure 5A). As illustrated in Figure 5B, the average 

helicity was higher in the presence of cyanines, with the magnitude of this effect increasing in the 

row AK12-17 < AK3-1 < AK7-6 < AK5-3 < AK3-3. In general, this row correlates with the 

inhibition potency of the examined compounds, except AK7-6. The observed stabilization of 

insulin structure under the influence of cyanines may result from their ability to interact with the 

B-chain α-helix as revealed by the molecular docking. Likewise, SASA per residue decreased in 

the B-chain (except AK7-6) and A-chain (except AK12-17) helical regions in the presence of 

cyanines, that is consistent with the involvement of hydrophobic interactions in the formation of 

the dye-protein complex (Figures S5–S10,B) [103]. Similarly, small stress molecules, the 

inhibitors of insulin amyloid formation, improved thermostability of the protein by stabilizing the 

native conformation [97]. Interestingly, AK3-3, possessing the highest inhibition potency, induced 

the most significant drop in RMSF in the helical regions, compared to other dyes (Figures S5–
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S10,C). Thus, the reduced amino acid flexibility supports the suggestion that cyanine compounds 

improve thermal stability of insulin similarly to e.g., b-cyclodextrin [104]. 

 

 

A B 

 
C 

Figure 5.  

α-helical content of free insulin monomer (InsN) and bound to AK3-3 plotted vs simulation time 

(A). Relative changes in the insulin helicity averaged over MD trajectory (20 ns) in the presence 

of cyanine dyes (B). Schematic illustration of the possible inhibition mechanisms of the insulin 

aggregation by the cyanine dyes (C). Insulin molecules are colored according to the secondary 

structure: helices (magenta and pink), beta-sheet (yellow), turns (cyan) and coil (white).  

 

The decreased backbone RMSD  and radius of gyration (Figures S5–S10,D) provide evidence 

for lower denaturation extent and higher degree of structural compactness of insulin in the presence 

of cyanine dyes. However, the high RMSD  values also suggest that the possibility of the 

stabilization of the partially unfolded insulin conformation by the investigated compounds cannot 

be excluded. The latter can be explained by more favorable binding to the conformations with the 

solvent-exposed hydrophobic residues, as was shown, e.g., for the organic fluorogen BSPOTPE 

that inhibited nucleation and elongation of insulin amyloid fibrils at low dye-protein ratio [95]. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

Based on the above results, the possible inhibition mechanisms of the insulin aggregation by 

the cyanine dyes can be outlined as follows (Figure 5C): i) stabilization of the native structure by 

hydrophobic, aromatic and electrostatic interactions, followed by the retardation of the protein 

nucleation (all dyes); ii) blocking the lateral extension of β-sheets via the dye-protein stacking 

interactions (AK3-3, AK3-5, AK5-3, AK5-9). 

 

4. Conclusions 

In conclusion, ThT fluorescence studies revealed that novel cyanine dyes can effectively 

inhibit insulin amyloid fibril formation under physiological conditions in vitro at low dye-protein 

ratio. The compounds possessing the polymethine bridge length of three carbons, long aliphatic 

substituents (especially those containing OH-groups) on the nitrogen atom of benzazole 

chromophore were found to display the highest ability to interfere with the protein aggregation. 

The quantum-chemical calculations, molecular docking and molecular dynamics simulations 

showed that the cyanines suppress the insulin amyloid nucleation presumably by stabilizing the α-

helices of the native state, preventing the toxic oligomers formation, unlike many polyphenols 

(viz., myricetin, baicalein, tannic acid, orcein), which do not interfere with the early nucleation 

events [11,105]. Among the examined dyes, the trimethines AK3-3 and AK3-5 appeared to be the 

most promising compounds for application in pharmacokinetic studies. Specifically, the effect of 

nanomolar concentrations of these dyes on insulin amyloid formation can be measured, as well, to 

enable the design of the anti-amyloid pharmaceutical formulations with the reduced toxicity [33]. 

Furthermore, the above cyanine compounds are expected to easily cross the blood-brain barrier 

due to the high lipophilicity and low molecular weight [33,75,76], to have low cytotoxicity due to 

low affinity for DNA [43], and low ability to exert nonspecific inhibitory effects due to reduced 

degree of self-association.  
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Highlights: 

 The studied cyanine dyes possessed high ability to suppress the insulin fibrillization, as 

revealed by ThT fluorescence 

 Quantum-chemical descriptors of trimethines 3-3, 3-5 and pentamethine 5-3 were similar 

to those of known amyloid inhibitors 

 Molecular docking indicated that most of the compounds bound to the helices of the insulin 

monomer 

 The molecular dynamics simulations showed the stabilization of the insulin α-helical 

structure by the cyanines 
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